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1 Differentiation in R

Recall the definition of continuity from the first part of the course:

Definition 1. Let f : [a, b] → R, be a real-valued function, p ∈ [a, b]. We write f(x) → q

as x→ p or limx→p f(x) = q if there exists q ∈ R with the following property: ∀ε > 0 there

exists δ > 0 such that:

|f(x)− q| < ε, ∀x ∈ (p− δ, p+ δ) ∩ [a, b], x 6= p

The following theorem gives two different characterizations to the definition above:

Theorem 1. Let f : [a, b] → R, be a real-valued function, p ∈ [a, b]. The following are

equivalent:

1. limx→p f(x) = q

2. limn→∞ f(xn) = q, for every sequence {xn}∞n=0, xn 6= p such that limn→∞ xn = p

3. limx↓p f(x) = limx↑p f(x) = q

These equivalences can be proven with the material covered in the first part of the course

and can be found on the reference books. They will be very useful when we want to show

whether a function is differentiable or not. This will become clear soon.

Definition 2. Let f : [a, b]→ R, be a real-valued function. We say that f is differentiable

at x0 ∈ [a, b] if the limit:

lim
x→x0

f(x)− f(x0)

x− x0
exists and is finite. We denote it by:

f ′(x0) := lim
x→x0

f(x)− f(x0)

x− x0

and say that f ′ is the derivative of f at x0. If f is differentiable at every x ∈ [a, b], we say

that f is differentiable.

Given Theorem 1 we can characterize the derivative of a function as:
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Theorem 2. Let f : [a, b] → R, be a real-valued function, x0 ∈ [a, b]. The following are

equivalent:

1. f is differentiable at x0, with derivative f ′(x0)

2. limn→∞
f(xn)−f(x0)

xn−x0 = f ′(x0), for every sequence {xn}∞n=0, xn 6= x0,

such that limn→∞ xn = x0

3. limx↓x0
f(x)−f(x0)

x−x0 = limx↑x0
f(x)−f(x0)

x−x0 = f ′(x0)

The following example computes the derivative of some common functions and shows

some functions that are not differentiable.

Example 1. 1. Let c ∈ R and f(x) = c. Then f ′(x) = 0,∀x ∈ R

2. Let n ≥ 1 and f(x) = xn. Then f ′(x) = nxn−1

3. Let f(x) = ex. Then f ′(x) = ex.

4. f(x) = |x| is not differentiable at x = 0

5. f(x) =


x · sin( 1x) if x 6= 0

0 if x = 0

is not differentiable at x = 0

Proof.

1. f(x) = c:

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0
= lim

x→x0

c− c
x− x0

= 0

2. f(x) = xn:

f(x)− f(x0) = xn − xn0

= (x− x0) · (xn−1 + xn−2x0 + xn−3x20 + . . .+ x · xn−20 + xn−10 )

= (x− x0)
n−1∑
k=0

xkxn−k−10
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Then,

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0
= lim

x→x0

n−1∑
k=0

xkxn−k−10

=
n−1∑
k=0

xk0x
n−k−1
0

= nxn−10

3. f(x) = ex:

lim
x0

f(x)− f(x0)

x− x0
= lim

x→x0

ex − ex0
x− x0

= ex0
(

lim
x→x0

ex−x0 − 1

x− x0

)
= ex0

(
lim
x→0

ex − 1

x

)

Recall the definition of e,

e := lim
y→0

(1 + y)1/y

Using the continuity of log at 1,

lim
y→0

log(1 + y)1/y = lim
y→0

1

y
log(1 + y) = 1

Using the continuity of 1/x at 1,

lim
y→0

y

log(1 + y)
= 1

Defining x = log(1 + y),

lim
x→0

ex − 1

x
= 1

Thus,

f ′(x0) = lim
x0

f(x)− f(x0)

x− x0
= ex0

(
lim
x→0

ex − 1

x

)
= ex0

4. f(x) = |x|:

We prove it using the characterizations given by Theorem 2:

lim
x↓x0

f(x)− f(0)

x
= 1 6= lim

x↑x0

f(x)− f(0)

x
= −1
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Given that the limits from above and from below are not equal to each other, the

function is not differentiable at 0.

5. f(x) =


x · sin( 1x) if x 6= 0

0 if x = 0

:

f(x)− f(0)

x
=
x sin( 1x)

x
= sin

(
1

x

)
Consider the sequences xn = 1

2nπ and yn = 1
2nπ+π/2 , n ∈ N.

sin(xn) = sin(2nπ) = 0, n ∈ N

sin(yn) = sin(2nπ + π/2) = 1, n ∈ N

By Theorem 2, f is not differentiable.

The following theorem states the relationship between continuity and differentiation of

a function.

Theorem 3. Let f : [a, b]→ R, be a real-valued function, differentiable at x0 ∈ [a, b]. Then

f is continuous at x0.

Proof.

f(x) = f(x) + f(x0)− f(x0)

= f(x0) +

(
f(x)− f(x0)

x− x0

)
· (x− x0)

Taking limits when x→ x0,

lim
x→x0

f(x) = f(x0) + lim
x→x0

(
f(x)− f(x0)

x− x0

)
· (x− x0)

Given that limx→x0

(
f(x)−f(x0)

x−x0

)
exists and is finite and limx→x0 x− x0 = 0,

⇒ lim
x→x0

f(x) = f(x0)
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Note that the converse of this theorem is not true. That is, if a function f : [a, b] → R

is continuous at some point x0 ∈ [a, b], it need not be differentiable at that point. For

example, the function

f(x) =


x · sin( 1x) if x 6= 0

0 if x = 0

is continuous at 0, but is not differentiable at that point.

Theorem 4. Suppose f, g : [a, b]→ R, be real-valued functions, differentiable at x0 ∈ [a, b]

and k ∈ R. Then:

1. (kf)′(x0) = kf ′(x0)

2. (f + g)′(x0) = f ′(x0) + g′(x0)

3. (f · g)′(x0) = f ′(x0)g(x0) + f(x0)g
′(x0)

4. if g(x0) 6= 0, then
(
f
g

)′
(x0) = f ′(x0)g(x0)−g′(x0)f(x0)

g(x0)2

Proof. See Rudin (1976).

Example 2. Let n ≥ 1 and f(x) = xn. Then f ′(x) = nxn−1.

Proof. By induction. For the base case, n = 1:

f(x) = x, f ′(x0) = lim
x→x0

x− x0
x− x0

= 1 = nxn−10

Assume it holds for n = k:

f(x) = xk, f ′(x0) = kxk−10

For n = k + 1:

f(x) = xk+1 = x · xk

Using the product rule in Theorem 4,

f ′(x0) = 1 · xk0 + x · kxk−10 = xk0 + kxk0 = (k + 1)xk0
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Theorem 5 (Chain rule). Let I and J be two intervals in R. Let f : I → R and g : J → R,

f(I) ⊆ J . If f is differentiable at x0 ∈ I and g is differentiable at f(x0) ∈ J , then:

(g ◦ f)′(x0) = g′(f(x0))f
′(x0)

Proof. See Rudin (1976).

1.1 Mean Value Theorems

Definition 3. Let f : A→ R, where A ⊆ R.

1. x0 ∈ A is a global maximum of f if f(x0) ≥ f(x), ∀x ∈ A

2. x0 ∈ A is a global minimum of f if f(x0) ≤ f(x), ∀x ∈ A

3. x0 ∈ A is a local maximum of f if ∃δ > 0 such that f(x0) ≥ f(x), ∀x ∈ A ∩ (x0 − δ, x0 + δ)

4. x0 ∈ A is a local minimum of f if ∃δ > 0 such that f(x0) ≤ f(x), ∀x ∈ A ∩ (x0 − δ, x0 + δ)

Theorem 6. Let f : [a, b]→ R. If f has a local maximum (minimum) at x0 ∈ (a, b) and f

is differentiable at x0, then f ′(x0) = 0.

Proof. Let f have a local maximum at x0 ∈ (a, b). Then, there exists a δ > 0 such that:

• For all x ∈ (x0, x0 + δ):

f(x)− f(x0)

x− x0
≤ 0 ⇒ lim

x↓x0

f(x)− f(x0)

x− x0
≤ 0

• For all x ∈ (x0 − δ, x0):

f(x)− f(x0)

x− x0
≥ 0 ⇒ lim

x↑x0

f(x)− f(x0)

x− x0
≥ 0

The limits exist, given that f is differentiable at x0. By Theorem 2,

0 ≤ f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0
≤ 0
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Theorem 7 (Rolle’s Theorem). f : [a, b] → R continuous on [a, b] and differentiable on

(a, b). If f(a) = f(b), then there exists x ∈ (a, b) such that f ′(x) = 0

Proof. Define

x1 = arg min
x∈[a,b]

f(x), m = min
x∈[a,b]

f(x)

x2 = arg max
x∈[a,b]

f(x), M = max
x∈[a,b]

f(x)

• If m = M , f is constant and f ′(x) = 0, ∀x ∈ [a, b]

• If m < M , at least one of x1 or x2 is different from both a and b, given that f(x1) <

f(x2) and f(a) = f(b). Without loss of generality, assume x1 ∈ (a, b). By Rolle’s

Theorem (Theorem 7), f ′(x1) = 0.

Theorem 8 (Cauchy’s Mean Value Theorem). Suppose f, g : [a, b]→ R are continuous and

differentiable on (a, b). There exists x0 ∈ (a, b) such that

f ′(x0)(g(b)− g(a)) = g′(x0)(f(b)− f(a))

Proof. Define h(t) := f(t)(g(b) − g(a)) − g(t)(f(b) − f(a)). h is continuous on [a, b], dif-

ferentiable on (a, b) and h(a) = h(b). By Rolle’s Theorem (Theorem 7), there exists an

x0 ∈ (a, b) such that h′(x0) = 0. This happens if, and only if,

f ′(x0)(g(b)− g(a)) = g′(x0)(f(b)− f(a))

Theorem 9 (Mean Value Theorem). Suppose f : [a, b]→ R is continuous and differentiable

on (a, b). There exists x0 ∈ (a, b) such that

f(b)− f(a) = f ′(x0)(b− a)

Proof. Set g(x) = x in Cauchy’s Mean Value Theorem (Theorem 8).

Theorem 10. Let f : [a, b]→ R is continuous, differentiable on (a, b) and

sup
x∈(a,b)

|f ′(x)| ≤M

Then,

|f(x)− f(x′)| ≤M |x− x′|, x, x′ ∈ [a, b]
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Proof. Let x, x′ ∈ [a, b], x < x′. By Mean Value Theorem (Theorem 9) there exists ζ ∈

(x, x′) such that

|f(x)− f(x′)| = |f ′(ζ)| · |x− x′| ≤M |x− x′|

Definition 4. Let f : I → R. If for all x1, x2 ∈ I:

1. x1 ≤ x2 ⇒ f(x1) ≤ f(x2), we say that f is monotonically increasing

2. x1 ≤ x2 ⇒ f(x1) ≥ f(x2), we say that f is monotonically decreasing

3. x1 < x2 ⇒ f(x1) < f(x2), we say that f is strictly monotonically increasing

4. x1 < x2 ⇒ f(x1) > f(x2), we say that f is strictly monotonically decreasing

The next theorem characterizes monotonic functions in terms of their derivatives:

Theorem 11. Let f : [a, b]→ R continuous and differentiable on (a, b).

1. f is increasing on (a, b) ⇐⇒ f ′(x) ≥ 0,∀x ∈ (a, b)

2. f is decreasing on (a, b) ⇐⇒ f ′(x) ≤ 0,∀x ∈ (a, b)

3. f is strictly increasing on (a, b) if f ′(x) > 0,∀x ∈ (a, b)

4. f is strictly decreasing on (a, b) if f ′(x) < 0, ∀x ∈ (a, b)

Proof. 1. ⇒: f is increasing ⇒ for all x < x′, f(x′)−f(x)
x′−x ≥ 0. Taking limits:

f ′(x) = lim
x′↓x

f(x′)− f(x)

x′ − x
≥ 0

⇐: f ′(x) ≥ 0 for all x ∈ (a, b). Let x1 < x2. By the Mean Value Theorem, there

exists ζ ∈ (x1, x2) such that:

f(x2)− f(x1) = f ′(ζ)(x2 − x1) ≥ 0

Then, f(x2) ≥ f(x1).

2. Analogous to 1.
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3. f ′(x) > 0 for all x ∈ (a, b). Let x1 < x2. By the Mean Value Theorem, there exists

ζ ∈ (x1, x2) such that:

f(x2)− f(x1) = f ′(ζ)(x2 − x1) > 0

Then, f(x2) > f(x1).

4. Analogous to 3.

Note that 3. and 4. go only in one direction: if the derivative is strictly positive (neg-

ative), the function is strictly increasing (decreasing). However, a function that is strictly

increasing (decreasing) does not necessarily have strictly positive (negative) derivative at

every point in the domain. An example of such a function is f(x) = x3. In this case, f is

strictly increasing, although f ′(0) = 0.

Are derivatives continuous? Not necessarily. For example, the function:

f(x) =


x2 · sin( 1x) if x 6= 0

0 if x = 0

is differentiable at every point. However, the derivative is not continuous at 0. Although

we cannot claim that the derivative of a function is continuous, derivatives and continuous

functions have something in common: they take on all the intermediate values.

Theorem 12 (Intermediate Value Theorem for Derivatives). Let f : [a, b]→ R continuous

and differentiable on [a, b]. If f ′(a) < λ < f ′(b), there exists x ∈ (a, b) such that f ′(x) = λ.

Proof. Let λ such that f ′(a) < λ < f ′(b). Define g(t) := f(t)− λt. Then:

g′(t) = f ′(t)− λ, g′(a) < 0, g′(b) > 0

This means that g is decreasing on a and increasing on b, so we can find x1, x2 ∈ (a, b)

such that g(x1) < g(a) and g(x2) < g(b). Thus, g attains a minimum at some x in the

interior of [a, b]. By Theorem 6, g′(x) = f ′(x)− λ = 0. Then:

f ′(x) = λ
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Theorem 13 (Inverse Function Theorem). Let f : (a, b)→ (c, d) be surjective, continuous

and differentiable on (a, b), and f ′(x) 6= 0, ∀x ∈ (a, b). Then f is a homeomorphism and its

inverse f−1 is differentiable, with:

(f−1)′(y) =
1

f ′(f−1(y))

Proof. If f ′(x) 6= 0,∀x ∈ (a, b), by the Intermediate Value Theorem for Derivatives, f ′(x)

is either positive for all x ∈ (a, b), or negative. Assume, without loss of generality, that

f ′(x) > 0,∀x ∈ (a, b).

Let a < x1 < x2 < b. By the Mean Value Theorem, there exists ζ ∈ (x1, x2) such that:

f(x2)− f(x1) = f ′(ζ)(x2 − x1) > 0

Then, f is strictly monotonically increasing, so it is injective. Since, by assumption, it is

also surjective, its inverse f−1 exists and is well defined. Moreover, since f is differentiable,

it is continuous on (a, b).

Now, lets prove that a strictly monotonic and continuous function is a homeomorphism.

Let y0 ∈ (c, d) and ε > 0. Denote x0 = f−1(y0) and define y− = f(x0−ε) and y+ = f(x0+ε).

Let δ = min{|y+ − y0| , |y− − y0|}.

Since f is monotonic, f−1 is also monotonic, so f−1(y0+δ) ≤ x0+ε, f−1(y0−δ) ≥ x0−ε

and f−1(y0− δ, y0 + δ) is an interval. Moreover, f is continuous, so f−1(y0− δ, y0 + δ) is an

open set, which means that f−1(y0 − δ, y0 + δ) ⊆ (x0 − ε, x0 + ε), so f−1 is continuous and

f is a homeomorphism.

Now, lets show that:

(f−1)′(y) =
1

f ′(f−1(y))

Let x0 = f−1(y0), x = f−1(y).
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(f−1)′(y0) = lim
y→y0

f−1(y)− f−1(y0)
y − y0

= lim
x→x0

x− x0
f(x)− f(x0)

=
1

f ′(x0)

=
1

f ′(f−1(y0))

The second equality is true because f−1 is continuous, which implies that y → y0 if and

only if x→ x0.

Example 3. Let y = sin(x), x ∈ (−π/2, π/2). Find (f−1)′(y).

Proof. f−1(y) = arcsin(y). Then, by the Inverse Function Theorem:

(f−1)′(y) =
1

cos(arcsin(x))
=

1√
1− sin2(arcsin(y))

=
1√

1− y2

11



1.2 L’Hospital’s Rule

Theorem 14 (L’Hospital’s Rule). Suppose f and g are differentiable on (a, b), g′(x) 6=

0,∀x ∈ (a, b), where −∞ ≤ a ≤ b ≤ ∞. Suppose:

lim
x→a

f ′(x)

g′(x)
= A, −∞ ≤ A ≤ ∞

If either:

1. limx→a f(x) = limx→a g(x) = 0

2. limx→a g(x) =∞

Then, limx→a
f(x)
g(x) = A

Proof. Without loss of generality, assume −∞ ≤ A <∞. Let A < r < q. Since:

lim
x→a

f ′(x)

g′(x)
= A

There exists c such that:
f ′(x)

g′(x)
< r, ∀x ∈ (a, c)

By Cauchy’s Mean Value Theorem, let a < x < y < c. Then:

f(x)− f(y)

g(x)− g(y)
=
f ′(t)

g′(t)
< r, t ∈ (x, y) ⊆ (a, c)

If 1. holds, then:

lim
x→a

f(x)− f(y)

g(x)− g(y)
=
f(y)

g(y)
≤ r < q

That is, for every q > A there exists c such that f(y)
g(y) < q for every y ∈ (a, c).

If 2. holds, there exists c1 > a such that g(x) > g(y) and g(x) > 0 for all x ∈ (a, c1).

⇒ f(x)− f(y)

g(x)− g(y)
· g(x)− g(y)

g(x)
< r · g(x)− g(y)

g(x)

⇒ f(x)

g(x)
< r +

f(y)

g(x)
− r · g(y)

g(x)

Then, there exists c2 such that f(x)
g(x) < q, ∀x ∈ (a, c2).
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1.3 Higher Order Derivatives and Taylor’s Theorem

Definition 5 (Higher Order Derivatives). Let f : [a, b]→ R be differentiable.

• If f ′ is continuous, we say f is continuously differentiable and denote it as f ∈ C1.

• If f ′ is differentiable, we say that f is twice-differentiable, and denote the second

derivative as f ′′. If, in addition, f ′′ is continuous, we say that f is twice-continuously

differentiable and denote it f ∈ C2.

• If f (n) is differentiable, we say that f is (n+ 1)th-differentiable, and denote the (n+

1)th derivative as f (n+1). If, in addition, f (n+1) is continuous, we say that f is

(n+ 1)th-continuously differentiable and denote it f ∈ C(n+1).

Theorem 15 (Taylor’s Theorem). Let f : [a, b]→ R be r-th order differentiable. Define:

P (h) := f(x) + f ′(x)h+ . . .+
f (r)(x)hr

r!

Then:

1. limh→0
f(x+h)−P (h)

xr = 0

2. P (h) is the only polynomial of degree lower than or equal to r with this approximation

property

3. If, in addition, f is (r+1)-th order differentiable, there exists ζ ∈ (x, x+h) such that:

f(x+ h) = P (h) +
f (r+1)(ζ)hr+1

(r + 1)!

Proof. 1. Define the residual function R(h) := f(x+ h)− P (h). We want to show that:

lim
h→0

R(h)

hr
= 0

Note that R(0) = f(x) − P (0) = 0. By the Mean Value Theorem, there exists

θ1 ∈ (0, h) such that:

R(h) = R(h)−R(0) = R′(θ1)(h− 0) = R′(θ1)h

Similarly, R′(0) = f ′(x)− P ′(0) = 0, so there exists θ2 ∈ (0, θ1) such that:

R(h) = (R′(θ1)−R′(0))h = R′′(θ2)(θ1 − 0)h = R′′(θ2)θ1h

13



Continuing in the same fashion:

R(h) = . . . = R(r−1)(θr−1)θr−2θr−3 . . . θ2θ1h, 0 < θr−1 < . . . < θ1 < h

That is, {θn}r−1n=0 is decreasing, so:

∣∣∣∣R(h)

hr

∣∣∣∣ =

∣∣∣∣∣R(r−1)(θr−1)θr−2θr−3 . . . θ2θ1h

hr

∣∣∣∣∣
≤

∣∣∣∣∣R(r−1)(θr−1)h
r−1

hr

∣∣∣∣∣
=

∣∣∣∣∣R(r−1)(θr−1)

h

∣∣∣∣∣
≤

∣∣∣∣∣R(r−1)(θr−1)

θr−1

∣∣∣∣∣ h→0−−−→ 0

Then, limh→0

∣∣∣R(h)
hr

∣∣∣ = 0.

2. Let:

P (h) = a0 + a1h+ . . .+ arh
r

Q(h) = b0 + b1h+ . . .+ brh
r

Suppose P 6= Q are two polynomials such that:

lim
h→0

f(x+ h)− P (h)

hr
= 0

lim
h→0

f(x+ h)−Q(h)

hr
= 0

Then:
f(x+ h)−Q(h)

hr
=
f(x+ h)− P (h)

hr
+
P (h)−Q(h)

hr
= 0

Which means that limh→0
P (h)−Q(h)

hr = 0.

There exists 0 ≤ k ≤ r such that ak 6= bk. Let k0 the highest such k.

• If k0 = r, then limh→0
P (h)−Q(h)

hr = ar − br 6= 0

• If k0 < r, then limh→0
P (h)−Q(h)

hr = ±∞

14



3. R(h) = f(x+ h)− P (h). Define g(h) := hr+1.

R(h)

g(h)
=

R(h)−R(0)

g(h)− g(0)

=
R′(θ1)−R′(0)

g′(θ1)− g′(0)

= . . .

=
R(r+1)(θr+1)

(r + 1)!

=
f (r+1)(θr+1)h

r+1

(r + 1)!
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1.4 Exercises

1. Let α ∈ R and

f(x) =


xα · sin( 1x) if x 6= 0

0 if x = 0

State whether f is differentiable or not. Does it depend on the value of α?

2. Let f : R −→ R be twice differentiable. Suppose there exists ε > 0 such that f ′′(x) > ε

for all x ∈ R. Show that f ′(x) = 0 for some x ∈ R.

3. Let f : R −→ R be twice continuously differentiable. Assume there is a c ∈ (a, b) such

that f ′(c) = 0 and f ′′(c) < 0. Show that f has a local maximum at c.

4. Suppose that f : (a, b) −→ R is differentiable and f ′ is bounded. If {xn} is a sequence

on (a, b) and xn −→ a, then f(xn) converges.

5. Show that ex > 1 + x for all x > 0.

6. Show that if α > 1, then (1 + x)α > 1 + αx for all x > 0. Similarly, it α < 1,

(1 + x)α < 1 + αx for all x > 0.

7. Let f : (a, b)→ R be differentiable and f ′ increasing. Show that f ′ is continuous.

8. Give an example of a function f that is differentiable, but whose derivative f ′ is not

continuous.

9. Let f : [a, b]→ R continuous and differentiable. Assume f(a) < 0, f(b) < 0, f(c) > 0,

where a < c < b. Prove that there exists ζ ∈ (a, b) such that f(ζ) + f ′(ζ) = 0.

10. Show that ex = ax2 + bx+ c has at most 3 real roots.

11. Let f(a, b) :→ R. Assume that f is differentiable at x0 ∈ (a, b). Show that

lim
h→0

f(x0 + h2)− f(x0)

h

exists.

12. Let:

f(x) =


x2 if x /∈ Q

0 if x ∈ Q

Is f differentiable at x = 0?

16



13. Let f : R → R be third-order differentiable. Assume that supx∈R |f(x)| ≤ M1,

supx∈R |f ′′′(x)| ≤M2. Then, f ′ and f ′′ are bounded.

14. Let f, g : R→ R be two functions.

(a) Assume f is differentiable at x0 but g is not differentiable at x0. Prove f(x)+g(x)

is not differentiable at x0.

(b) Assume both f and g are not differentiable at x0. Can f(x)+g(x) be differentiable

at x0?

15. Let f, g : R → R be two functions. Let y0 = g(x0) for some x0 ∈ R. Consider the

following cases:

(a) g is differentiable at x0 and f is not differentiable at y0;

(b) g is not differentiable at x0 and f is differentiable at y0;

(c) g is not differentiable at x0 and f is not differentiable at y0.

For each case, find examples of f and g such that f ◦ g is differentiable at x0.

16. Assume f is differentiable at some x0. Calculate the following two limits.

(a) limh→0
f(x0−h)−f(x0)

h ;

(b) limh→0
f(x0+h)−f(x0−h)

h .

17. (Exercise 1 on page 186, Pugh)

18. (Exercise 5 on page 186, Pugh)

19. (Exercise 11 on page 186, Pugh) Assume that f : (−1, 1) → R and f ′(0) exists. If

αn, βn → 0 as n→∞, define the different quotient

Dn =
f(βn)− f(αn)

βn − αn
.

(a) Prove that limn→∞Dn = f ′(0) under each of the following conditions

i. αn < 0 < βn.

ii. 0 < αn < βn and βn
βn−αn

≤M .

iii. f ′(x) exists and is continuous for all x ∈ (−1, 1).

17



(b) Set f(x) = x2 sin(1/x) for x 6= 0 and f(0) = 0. Observe that f is differentiable

everywhere in (−1, 1) and f ′(0) = 0. Find αn and βn that tend to 0 in such a

way that Dn converges to a limit unequal to f ′(0).

20. (Exercise 13 on page 187, Pugh) Assume that f : R→ R is differentiable.

(a) If there is an L < 1 such that for each x ∈ R, f ′(x) < L, prove that there exists

a unique point x such that f(x) = x.

(b) Show by example that (a) fails if L = 1.

21. Suppose f : R→ R is twice differentiable. Assume f(0) > 0, f ′(0) < 0 and f ′′(x) < 0

for all x ∈ R. Prove there exists ξ ∈
(

0,− f(0)
f ′(0)

)
such that f(ξ) = 0.

22. Assume f : [a, b]→ R is twice differentiable and f ′(a) = f ′(b) = 0. Prove there exists

ξ ∈ (a, b) such that ∣∣f ′′(ξ)∣∣ ≥ 4

(b− a)2
∣∣f(b)− f(a)

∣∣.
(Hint: expand f

(
a+b
2

)
at a and b respectively)

23. (Exercise 10 on page 187, Pugh) Let f : (a, b)→ R be given.

(a) If f ′′(x) exists, prove that

lim
h→0

f(x− h)− 2f(x) + f(x+ h)

h2
= f ′′(x).

(b) Find an example that this limit can exist even when f ′′(x) fails to exist.

24. Let f : [a, b] → R be twice differentiable. Assume supx∈[a,b] |f ′′(x)| ≤ M for some

constant M . Assume also f achieves its global maximum at some point x∗ in (a, b).

Prove ∣∣f ′(a)
∣∣+
∣∣f ′(b)∣∣ ≤M(b− a).

25. Assume f function is continuous on [0,∞) and differentiable on (0,∞). Suppose

f(0) = 0 and f ′ is increasing on (0,∞). Prove

g(x) =
f(x)

x

is increasing on (0,∞).
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2 Differentiation in Rn

2.1 Preamble

The following section assumes knowledge of linear algebra. Particularly, the following the-

orems will be used henceforth.

Definition 6. Let V and W be vector spaces. The mapping T : V → W is linear if

∀v, v′ ∈ V, α, β ∈ R:

T (αv + βv′) = αT (v) + βT (v′)

Definition 7. Let V and W be vector spaces. We say that V and W are isomorphic if

there exists a linear mapping T : V →W that is bijective. T is called an isomorphism.

Theorem 16. Let V and W be vector spaces and dim(V ) < ∞,dim(W ) < ∞. Then, V

and W are isomorphic if, and only if, dim(V ) = dim(W ).

The importance of this theorem relies on the fact that if we want to study any finite

dimensional vector space of dimension n, it suffices to study Rn.

2.2 L(V,W ) as a normed space

Recall that a norm on a vector space V is a function ‖·‖ : V → R such that, for every

v, w ∈ V and λ ∈ R:

1. ‖v‖ ≥ 0 and ‖v‖ = 0 if and only if v = 0

2. ‖λv‖ = |λ| · ‖v‖

3. ‖v + w‖ ≤ ‖v‖+ ‖w‖

We are now going to endow the vector space L(V,W ) of all linear maps from V to W

with a norm.

Definition 8. Let V and W be two normed vector spaces with ‖·‖V and ‖·‖W the respective

norms. Consider the map T : V → W . That is, T ∈ L(V,W ). Define the operator norm

‖·‖ on L(V,W ) as:

‖T‖ = sup
v 6=0

‖Tv‖W
‖v‖V
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Note that for v ∈ V , the term
‖Tv‖W
‖v‖V

is the “stretch” of the vector v after T is applied

to it. Therefore, the operator norm is the supremum of the “stretches” of the the vectors

in V under the operator T .

Example 4. 1. T : R→ R, T (x) = αx, α ∈ R.

‖Tx‖
‖x‖

=
|αx|
|x|

=
|α| · |x|
|x|

= |α| , ∀x ∈ R

⇒ ‖T‖ = |α|

2. T : R→ Rn, T (x) = vx, v ∈ Rn

‖Tx‖
‖x‖

=
‖vx‖
|x|

=
‖v‖ · |x|
|x|

= ‖v‖ , ∀x ∈ R

⇒ ‖T‖ = ‖v‖

The following theorem endows the vector space L(V,W ) with the operator norm ‖·‖

defined above.

Theorem 17. ‖·‖ is a norm on L(V,W ).

Proof. Left as an exercise.

The next theorem gives another characterizations of the operator norm. In particular, it

states that to compute the norm of an operator T : V →W , it suffices to find the maximum

stretch of the operator over the elements on the unit sphere, instead of the stretch of every

single vector in V . The intuition behind the proof is simple: any linear operator has exactly

the same “stretch” over all the multiples of a vector v. That is:

‖Tv‖
‖v‖

=
‖T (λv)‖
‖λv‖

, ∀λ ∈ R

This means that computing the supremum over all the elements of V is equivalent to finding

the supremum over all the elements in the unit sphere in V .

Theorem 18.

‖T‖ = sup
v 6=0

‖Tv‖W
‖v‖V

= sup
v 6=0
‖v‖≤1

‖Tv‖W
‖v‖V

= sup
‖v‖=1

‖Tv‖W
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Proof. Define:

a := sup
v 6=0

‖Tv‖W
‖v‖V

, b := sup
v 6=0
‖v‖≤1

‖Tv‖W
‖v‖V

, c := sup
‖v‖=1

‖Tv‖W

We are going to show that a ≥ b ≥ c ≥ a.

• a ≥ b: {v : ‖v‖ ≤ 1, v 6= 0} ⊆ {v : v 6= 0}. Therefore, the supremum taken over a

bigger set must be greater than or equal.

• b ≥ c: {v : ‖v‖ = 1, v 6= 0} ⊆ {v : ‖v‖ ≤ 1, v 6= 0}. Therefore, the supremum taken

over a bigger set must be greater than or equal.

• C ≥ a:

Assume c < a. This means:

sup
‖v‖=1

‖Tv‖W < sup
v 6=0

‖Tv‖W
‖v‖V

⇒ ∃v0 ∈ V such that:

sup
‖v‖=1

‖Tv‖W <
‖Tv0‖W
‖v0‖V

‖Tv0‖W
‖v0‖V

=

(
1

‖v0‖V

)
· ‖Tv0‖W =

∥∥∥∥( 1

‖v0‖V

)
· Tv0

∥∥∥∥
W

=

∥∥∥∥T ( v0
‖v0‖V

)∥∥∥∥
W

Denote z := v0
‖v0‖V

. Clearly, ‖z‖ = 1, which means that:

‖Tv0‖W
‖v0‖V

= ‖Tz‖W > sup
‖v‖=1

‖Tv‖W , z ∈ V, ‖z‖ = 1

which is a contradiction. Thus, a = b = c.

The following theorems are properties of the operator norm ‖·‖ that will be used later

when studying derivatives in Rn.
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Theorem 19 (Cauchy-Schwartz Inequality). ‖Tv‖W ≤ ‖T‖ · ‖v‖V , ∀v ∈ V

Proof. If v = 0, then ‖v‖ = 0 and ‖Tv‖ = 0.

If v 6= 0:

‖Tv‖W
‖v‖V

≤ sup
v 6=0

‖Tv‖W
‖v‖V

= ‖T‖ ⇒ ‖Tv‖W ≤ ‖T‖ · ‖v‖V , ∀v ∈ V

Theorem 20. If ‖Tv‖W ≤ λ ‖v‖V , ∀v ∈ V and λ > 0, then:

‖T‖ ≤ λ

Proof.
‖Tv‖W
‖v‖V

≤ λ, ∀v ∈ V

Taking the supremum over all v ∈ V , the inequality remains.

Theorem 21. If T : V → W and S : W → U are linear maps between normed spaces,

then:

‖S ◦ T‖ ≤ ‖S‖ ‖T‖

Proof. Using Theorem 19:

‖(S ◦ T )v‖W
‖v‖V

=
‖S(T (v))‖W
‖v‖V

≤
‖S‖ · ‖Tv‖W
‖v‖V

≤
‖S‖ ‖T‖ ‖v‖V
‖v‖V

= ‖S‖ ‖T‖

Now that we have endowed L(V,W ) with a norm, we can define a metric in the natural

way:

d(T, S) = ‖T − S‖ , ∀T, S ∈ L(V,W )

With a metric, we can talk about open and closed sets in L(V,W ) and apply all the

topological properties of metric spaces derived in the first part of the math camp.

The following theorem will prove to be very useful later on. It gives another character-

ization for continuous operators T .
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Theorem 22. Let T ∈ L(V,W ) be a linear mapping. The following are equivalent:

1. ‖T‖ <∞

2. T is uniformly continuous

3. T is continuous

4. T is continuous at the origin

Proof. 1.⇒ 2.: Assume ‖T‖ <∞.

∥∥Tv − Tv′∥∥
W

=
∥∥T (v − v′)

∥∥
W
≤ ‖T‖

∥∥v − v′∥∥
V

Let ε > 0 and δ = ε/ ‖T‖. For all v, v′ ∈ V such that ‖v − v′‖V < δ = ε/ ‖T‖:

∥∥Tv − Tv′∥∥
W
≤ ‖T‖

∥∥v − v′∥∥
V
< ‖T‖ · ε

‖T‖
= ε

Thus, T is uniformly continuous.

2.⇒ 3.: Immediate.

3.⇒ 4.: Immediate.

4.⇒ 1.: Assume T is continuous at the origin and take ε = 1. ∃δ > 0 such that ∀v ∈ V :

‖v‖V < δ ⇒ ‖T (v)− T (0)‖W = ‖Tv‖W < ε = 1

Let v ∈ V and set u := λv, where λ = δ
2‖v‖V

.:

‖u‖V = ‖λv‖V =
δ

2
< δ ⇒ ‖Tu‖W < ε = 1

‖Tv‖W
‖v‖V

=
‖Tu‖W
‖u‖V

<
1

‖u‖V
=

2

δ

Taking supremum over all v ∈ V :

‖T‖ ≤ 2

δ
<∞
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The idea behind the proof of the last implication is the following. The stretch of any

vector v under T is the same that the stretch of a multiple of that vector under T . Thus,

for any v, we take a vector u, which is a multiple of v that has a sufficiently small norm.

We know that T is continuous at the origin, so the image of u under T will be bounded,

proving that its stretch is finite.

Theorem 23. Let T : Rn → W be a linear mapping to W , a normed vector space. Then

T is continuous. If, in addition, T is an isomorphism, the T is a homeomorphism.

Proof. First, we will show that any linear mapping from Rn to any normed vector space W

is continuous. By Theorem 22, It suffices to show that ‖T‖ <∞.

‖v‖ =
√
v21 + . . .+ v2n ≥ |vi| , i ∈ {1, . . . , n}

Let M = max{|Te1| , . . . , |Ten|} where ei are the unit vectors in Rn.

‖Tv‖W = ‖T (v1e1 + . . .+ vnen)‖W

≤ |v1| ‖Te1‖+ . . .+ |vn| ‖Ten‖

≤ (|v1|+ . . .+ |vn|) ·M

≤ nM ‖v‖

⇒
‖Tv‖W
‖v‖

≤ nM, ⇒ ‖T‖ = sup
v 6=0

‖Tv‖W
‖v‖V

≤ nM <∞

This proves that T is continuous. Now, assume T is an isomorphism. We want to show

that T−1 is continuous. That is,
∥∥T−1∥∥ <∞. Define the unit sphere in Rn:

Sn−1 = {v ∈ Rn : ‖v‖ = 1}

Sn−1 is compact in Rn. Since T is continuous, T (Sn−1) is compact in W . Given that T

is an isomorphism:

T (v) = 0 ⇐⇒ v = 0

So, since 0 /∈ Sn−1 ⇒ 0 /∈ T (Sn−1) and ∃c > 0 such that ‖w‖ > c,∀w ∈ T (Sn−1).
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It can be easily shown that the preimage of elements w inside the c−sphere in W lie strictly

inside Sn−1. That is:

∀w ∈W,w /∈ T (Sn−1), ‖w‖W < c ⇒
∥∥T−1w∥∥ < 1

Now, lets to the same as in the proof of Theorem 22. Take any w ∈ W and define

u = λw, where λ = c
2‖w‖W

.

‖u‖W < c ⇒
∥∥T−1u∥∥ =

∥∥T−1w∥∥
‖w‖W

· c
2
< 1

⇒
∥∥T−1w∥∥
‖w‖W

<
2

c
<∞ ⇒

∥∥T−1∥∥ <∞

Theorem 24. Let T : V → W be a linear mapping. If dim(V ) = n < ∞ then T is

continuous and if T is an isomorphism, T is an homeomorphism.

Proof. dim(V ) = n so V and Rn are isomorphic. Let H : Rn → V be an isomorphism. By

Theorem 23, H is a homeomorphism, so H−1 is continuous. Moreover, T ◦H : Rn →W is

also continuous. Therefore, T = (T ◦H) ◦H−1 is continuous.

If T is an isomorphism, since H is isomorphism, T ◦ H is an isomorphism and, by

Theorem 23, a homeoporphism. That is, (T ◦ H)−1 = (H−1 ◦ T−1) is continuous. Then,

T−1 = H ◦ (H−1 ◦ T−1) is continuous.
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3 Derivatives in Rn

Recall that f : R→ R is differentiable at x ∈ R if the following limit exists and is finite:

lim
h→0

f(x+ h)− f(x)

h

We say that the derivative of f at x is:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

This is equivalent to saying that f is differentiable at x, with derivative f ′(x), if there

exists a function r : R→ R such that:

f(x+ h)− f(x) = f ′(x) · h+ r(h)

And the remainder r is “sublinear”:

lim
h→0

r(h)

h
= 0

Note that, for a given x, the term f ′(x)h is linear in h, so we can interpret the derivative

f ′(x) not as a number, but as a linear operator in R, that maps h to f ′(x)h. This is a

natural way to extend the concept of derivative to Rn:

Definition 9. Let f : U → Rm, U ⊆ Rn. The function f is differentiable at p ∈ U , if there

exists a linear transformation T : Rn → Rm such that:

f(p+ v)− f(p) = T (v) +R(v)

and the remainder function R is sublinear:

lim
v→0

‖R(v)‖
‖v‖

= 0

We say that the derivative (also called total derivative of Frechet derivative) is (Df)p = T .

This is equivalent to saying that f : U → Rm is differentiable at p ∈ U if there exists a

linear transformation T : Rn → Rm such that

lim
v→0

‖f(x+ v)− f(x)− T (v)‖
‖v‖

= 0
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Theorem 25. If f is differentiable at p ∈ U , then the derivative is uniquely determined by:

(Df)p(u) = lim
t→0

f(p+ tu)− f(p)

t

Proof. Let T be a linear map satisfying f(p+v)−f(p) = T (v)+R(v) and limv→0
‖R(v)‖
‖v‖ = 0.

lim
t→0

f(p+ tu)− f(p)

t
= lim

t→0

T (tu)

t
+
R(tu)

t

= lim
t→0

tT (u)

t
+
R(tu)

t

= T (u) + lim
t→0

R(tu)

t ‖u‖
· ‖u‖

Given that ‖u‖ is finite and R is sublinear, the second term vanishes, so:

lim
t→0

f(p+ tu)− f(p)

t
= T (u)

Since limits are unique, if there are two such transformations T and T ′, they must be equal

to each other: T = T ′.

Now, we state some of the theorems we saw in the univariate case, extended for the

multivariate case.

Theorem 26. Let f : U → Rm, U ⊆ Rn. Suppose f is differentiable at p. Then f is

continuous at p.

Proof. (Df)p : Rn → Rm is a linear map, from Rn to a normed vector space Rm. By

Theorem 23, (Df)p is continuous. This is equivalent to ‖(Df)p‖ <∞.

lim
v→0
‖f(p+ v)− f(p)‖ = lim

v→0
‖(Df)p(v) +R(v)‖

≤ lim
v→0
‖(Df)p‖ · ‖v‖+ ‖R(v)‖

= 0

given that ‖(Df)p‖ <∞, limv→0 ‖v‖ = 0 and limv→0 ‖R(v)‖ = 0.

Theorem 27. Let f, g : U → Rm, U ⊆ Rn be differentiable at p ∈ U , α ∈ R. Then:

1. (D(f + αg))p = (Df)p + α(Dg)p

2. If f(p) = c, for all p ∈ U , then (Df)p = 0
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3. If f : Rn → Rm is a linear mapping, f(v) = Av,A ∈ Rm × Rn, then (Df)p = A for

all p ∈ U

Proof. Left as an exercise.

Theorem 28 (Chain Rule). Let U ⊆ Rn and W ⊆ Rm be open sets. Let f : U → Rm

be differentiable at p ∈ U and f(U) ⊆ W . Let g : W → Rl be differentiable at f(p) ∈ W .

Define h = g ◦ f . Then h is differentiable at p ∈ U and (Dh)p = (Dg)f(p) · (Df)p

Proof.

f(p+ v)− f(p) = (Df)p(v) +R(v)

g(f(p) + u)− g(f(p)) = (Dg)f(p)(u) + S(u)

g(f(p+ v)) = g(f(p) + (Df)p(v) +R(v))

= g(f(p)) + (Dg)f(p)((Df)p(v) +R(v)) + S((Df)p(v) +R(v))

Therefore,

g(f(p+ v))− g(f(p)) = (Dg)f(p)((Df)p(v) +R(v)) + S((Df)p(v) +R(v))

= (Dg)f(p)(Df)p(v) + (Dg)f(p)R(v) + S((Df)p(v) +R(v))

It now suffices to show that the last two terms are sublinear:

1. (Dg)f(p)R(v):

lim
v→0

∥∥(Dg)f(p)R(v)
∥∥

‖v‖
≤ lim

v→0

∥∥(Dg)f(p)
∥∥ · ‖R(v)‖

‖v‖
= 0

as the first term is finite anr R is sublinear.

2. S((Df)p(v) +R(v)):

lim
v→0

‖S((Df)p(v) +R(v))‖
‖v‖

= lim
v→0

‖S((Df)p(v) +R(v))‖
‖(Df)p(v) +R(v)‖

· ‖(Df)p(v) +R(v)‖
‖v‖

The limit when v → 0 of the last term is finite:

‖(Df)p(v) +R(v)‖
‖v‖

≤ ‖(Df)p(v)‖
‖v‖

+
R(v)

‖v‖
≤ ‖(Df)p‖ ‖v‖

‖v‖
+
R(v)

‖v‖
= ‖(Df)p‖+

R(v)

‖v‖
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Theorem 29. Let f : U → Rm, U ⊆ Rn. Then, f is differentiable at p ∈ U if and only

if each of its components fi is differentiable at p. Furthermore, the derivative of the i-th

component is the i-th component of the derivative.

Proof. ⇒: Let f be differentiable and define the projection on the i-th dimension as:

πi : Rn → R, πi(w1, . . . , wi, . . . , wn) = wi

Clearly, πi is linear, so it is differentiable. Then, fi = π1 ◦ f is differentiable and:

(Dfi)p = (Dπi)f(p)(Df)p

Moreover, since the projection can be represented by the 1×n vector that has 1 in the i-th

component and 0 elsewhere:

A = (0, . . . , 1, . . . , 0)

We know that (Dπi)f(p) is represented by the matrix A. So:

(Dfi)p = πi ◦ (Df)p

⇐: Suppose each fi is differentiable, with derivative (Dfi)p. Construct:

A =


(Df1)p

...

(Dfm)p



⇒ f(p+ h)− f(p)− (Df)p · h =


f1(p+ h)− f1(p)− (Df1)p · h

...

fm(p+ h)− fm(p)− (Dfm)p · h


Taking limits, this converges if and only if each each component converges. Therefore,

(Df)p is the derivative of f .

This theorem is important, because it shows that what makes calculus in Rn different

from calculus in R is the multidimensionality of the domain, and not of the range.
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Theorem 30 (Mean Value Theorem). Let f : U → Rm, U ⊆ Rn. Assume f is differentiable

on U and the segment [p, q] is contained in U . Then:

|f(q)− f(p)| ≤M |q − p| , M = sup
x∈U
{‖(Df)x‖}

Proof. Assume the segment [p.q] is contained in U . The segment can be parameterized as:

p+ t(q − p), t ∈ [0.1]

Define:

g : [0, 1]→ R, g(t) := (f(p)− f(q))t · f(p+ t(q − p))

⇒ g′(t) = (f(p)− f(q))t(Df)p+t(q−p)(q − p)

By the Mean Value Theorem in R, there exists ζ ∈ (0, 1) such that:

g(1)− g(0) = g′(ζ) = (f(p)− f(q))t(Df)p+ζ(q−p)(q − p)

g(1)− g(0) = (f(p)− f(q))t · (f(p)− f(q)) = −‖f(p)− f(q)‖2

⇒ ‖f(p)− f(q)‖2 = (f(p)− f(q))t(Df)p+ζ(q−p)(p− q)

By the Cauchy-Schwartz Inequality:

‖f(p)− f(q)‖ ≤
∥∥(Df)p+ζ(q−p)

∥∥ · ‖p− q‖ ≤M ‖p− q‖

Corollary 1. Assume U is connected. Let f : U → Rm, U ⊆ Rn be differentiable and

(Df)x = 0. Then f is constant.

Proof. Let x ∈ U . Define P (x) := {y ∈ U |f(x) = f(y)}. Lets show that P (x) is open:

Let y ∈ P (x). Since U is open, there exists an ε-neighborhood of y, Oy ⊆ U , which is open.

Let z ∈ Oy. The segment [y, z] ⊆ Oy. Then, |f(y)− f(z)| ≤ M |y − z| = 0. This implies

that f(x) = f(y) = f(z) for every z ∈ Oy. Then z ∈ P (x), which implies Oy ⊆ P (x), so

P (x) is open.

Now we show P (x) = U,∀x ∈ U . Assume P (x) 6= U . That is, assume there exists x ∈

U,P (x) 6= U . P (x) and ∪y/∈P (x)P (y) are both open, disjoint and U = P (x)∪
(
∪y/∈P (x)P (y)

)
.

This implies that U is disconnected, which is a contradiction. Therefore, P (x) = U .
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3.1 Partial Derivatives

Definition 10. Let f : U → Rm, U ⊆ Rn. Define the ij-th partial derivative of f at p as:

∂fi(p)

∂xj
= lim

t→0

fi(p+ tej)− fi(p)
t

Theorem 31. Let f : U → Rm, U ⊆ Rn be differentiable. Then, the partial derivatives

exist and are the entries of the matrix that represents the total derivative.

Proof. Recall that the total derivative (Df)p is a linear map. This means that there exists

a matrix of size m × n that represents (Df)p. Let A be the matrix that represents the

derivative (Df)p. Then:

(Df)p(ej) = Aej = lim
t→0

f(p+ tej)− f(p)

t
=


∂f1(p)
∂xj
...

∂fm(p)
∂xj


Then:

A =


∂f1(p)
∂x1

. . . ∂f1(p)
∂xn

...
...

∂fm(p)
∂x1

. . . ∂fm(p)
∂xn



Note that Theorem 31 states that if the derivative exists, then the partials also exist.

A natural question is whether the converse is true. If the partial derivatives exist, is the

function f differentiable? The following example shows that this is not the case.

Example 5. Let:

f(x) =


0 if x, y = 0

xy
x2+y2

otherwise

f is not continuous at (x, y) = (0, 0). To see this, take:

(xn, yn) =

(
1

n
,

1√
n

)
n→∞−−−→ (0, 0)

f(xn, yn) =
1

2
, ∀n ≥ 1

But f(0, 0) = 0, so f is not continuous. However, the partials exists. Note, however, that

the partials are not continuous.
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In the above example, we saw that the existence of the partials is not sufficient for

the function to be differentiable. In particular, the partial derivatives of the function in

the example existed, but were not continuous. The following theorem states a sufficient

condition for f to be differentiable.

Theorem 32. Let f : U → Rm, U ⊆ Rn. If the partial derivatives of f exist and are

continuous then f is differentiable.

Proof. Assume the partials exist and are continuous. Without loss of generality, assume

that m = 1 (Theorem 29). Let h ∈ Rn.

f(x+ h)− f(x) = f(x1 + h1, . . . , xn + hh)− f(x1, . . . , xn)

= f(x1 + h1, . . . , xn + hh)− f(x1, x2 + h2, . . . , xn + hn)

+ f(x1, x2 + h2, . . . , xn + hh)− f(x1, x2, x3 + h3 . . . , xn + hn)

+ f(x1, x2, x3 + h3, . . . , xn + hh)− f(x1, x2, x3, x4 + h4, . . . , xn + hn)

. . .

+ f(x1, x2, . . . , xn−1, xn + hh)− f(x1, x2, . . . , xn)

We are “moving” component by component on each line. Using the Mean Value Theorem:

=
∂f

∂x1
(θ1, x2 + h2, . . . , xn + hn)h1

+
∂f

∂x2
(x1, θ2, x3 + h3, . . . , xn + hn)h2

+ . . .

+
∂f

∂xn
(x1, . . . , xn−1, θn)hn

where θ1 ∈ (x1, x1 + h1), . . . , θn ∈ (xn, xn + hn). Then:

f(x+ h) − f(x)−A · h

=

(
∂f

∂x1
(θ1, x2 + h2, . . . , xn + hn)− ∂f

∂x1
(x), . . . ,

∂f

∂xn
(x1, . . . , xn−1, θn)− ∂f

∂xn
(x)

)
· h

= z(h) · h

By Cauchy-Schwartz Inequality:

‖f(x+ h)− f(x)−A · h‖
‖h‖

≤ ‖z(h)‖
‖h‖

‖h‖ = ‖z(h)‖ h→0−−−→ 0
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where the last inequality follows because the partials are continuous. Therefore, f is differ-

entiable.

3.2 Higher Order Derivatives

Recall that for f : U → Rm differentiable:

(Df) : U → L(Rn,Rm)

x 7→ (Df)x

where, for all x ∈ U , (Df)x : U → Rm. We define the second derivative analogously.

Definition 11. (Df) is differentiable at x ∈ Rn if there exists a linear mapping

T : Rn → L(Rn,L(Rn,Rm))

such that:

(Df)x+v − (Df)x = T (v) +R(v), lim
‖v‖→0

‖R(v)‖
‖v‖

= 0

We denote the derivative as (D2f) := T and call it the second derivative of f .

Note that (D2f) : Rn → L(Rn,L(Rn,Rm)), so when we evaluate the derivative at a

point p ∈ Rn, (D2f)p is a linear transformation from Rn to L(Rn,Rm). This means that

for v ∈ Rn, (D2f)p(v) is a linear transformation from Rn to Rm:

(D2f)p(v) : Rn → Rm

This finally means that:

(D2f)p(v)(w) ∈ Rm, v ∈ Rn, w ∈ Rn

We can also interpret (D2f)p as a function:

(D2f)p : Rn × Rn → Rm

(v, w) 7→ (D2f)p(v)(w) ∈ Rm

Definition 12. Let V,W,Z be vector spaces. A map T : V ×W → Z is bilinear if for every

v ∈ V and every w ∈W , the maps T (v, .) : W → Z and T (., w) : V → Z are linear.
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Note that the second derivative (D2f)p is a bilinear map.

Equivalently, (Df) is differentiable at p ∈ Rn if there exists a linear map T : Rn →

L(Rn,L(Rn,Rm)) such that:

lim
‖v‖→0

‖(Df)p+v − (Df)p − Tv‖
‖v‖

= 0

Theorem 33. Let T : Rm × Rn → R be a bilinear map. There exists a unique matrix

representation Am×n of T , such that:

g(u, v) = utAv, u ∈ Rm, v ∈ Rn

Proof. See Lang (2010).

That is, if the function f : Rn → R is twice differentiable, there exists a matrix repre-

sentation for the second derivative.

Theorem 34. Let f : Rn → Rm. If (D2f)p exists, then (D2fk)p exists, the second partial

derivatives at p exist and

(D2fk)p(ei)(ej) =
∂2fk(p)

∂xi∂xj

Proof. Let f : Rn → Rm be twice differentiable, so (D2fk)p exists. Let the mapping

S : L(Rn,Rm) → µm×n be the isomorphism that assigns to a linear transformation its

matrix representation:

S(T ) = A, T (v) = Av, v ∈ Rn

(Df)x is a linear transformation and is differentiable, so S ◦ (Df)x is differentiable. Note

that:

Mx := S ◦ (Df)x =


∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...

∂fn
∂x1

. . . ∂fn
∂xn


Note that the map S ◦ (Df) : Rn → µm×n, and µm×n is isomorphic to Rm×n. By

Theorem 29, the map S ◦ (Df)x is differentiable at x = p if and only if all of the entries
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of Mx are differentiable. Then, its partial derivatives exist and are the derivatives of the

entries of Mx:

∂
(
∂fi
∂xj

)
∂xk

=
∂2fi

∂xj∂xk

The second partial derivatives are ∂2fi
∂xj∂xk

.

Now, we can define the hessian. Consider f : Rn → R. Suppose that (D2f)p exists.

Then its representation matrix exists, we denote it the hessian matrix, and is given by:


∂2f

∂x1∂x1
. . . ∂2f

∂x1∂xn
...

. . .
...

∂2f
∂xn∂x1

. . . ∂2f
∂xn∂xn



Theorem 35. If (D2f)p exists, it is symmetric:

(D2f)p(v)(w) = (D2f)p(w)(v)

Proof. Without loss of generality, assume m = 1 (as symmetry concerns only the arguments

of f , not its values). Let f : Rn → R. Fix v, w ∈ Rn. Let t ∈ [0, 1] and define g : [0, 1]→ R,

where:

g(s) = f(p+ tv + stw)− f(p+ stw)

⇒ g(0) = f(p+ tv)− f(p), g(1) = f(p+ tv + tw)− f(p+ tw)

Note that g(1)− g(0) is a symmetric function of v and w, so we can interchange them and

get exactly the same result:

g(1)− g(0) = f(p+ tv + tw)− f(p+ tv)− f(p+ tw) + f(p)

By the Mean Value Theorem, g(1) − g(0) = g′(θ), θ ∈ (0, 1). By definition of the

derivative:

(Df)p+tv+θtw − (Df)p = (D2f)p(tv + θtw) +R(tv + θtw)

(Df)p+θtw − (Df)p = (D2f)p(θtw) + S(θtw)
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⇒ (Df)p+tv+θtw − (Df)p+θtw = (D2f)p(tv) +R(tv + θtw)− S(θtw)

g′(θ) = (D2f)p(tv)(tw) +R(tv + θtw)(tw)− S(θtw)(tw)

g(1)− g(0)

t2
=

g′(θ)

t2

=
(D2f)p(tv)(tw)

t2
+
R(tv + θtw)(tw)

t2
+
S(θtw)(tw)

t2

= (D2f)p(v)(w) +
R(tv + θtw)(w)

t
+
S(θtw)(w)

t
t→0−−→ (D2f)p(v)(w)

The result is exactly the same if we interchange v and w:

⇒ (D2f)p(v)(w) = (D2f)p(w)(v)

Corollary 2. Let f : Rn → R. Suppose that f is twice differentiable. Then, there exists a

symmetric matrix representation (hessian) for (D2f)x.

Theorem 36 (Inverse Function Theorem). Let f : U → Rn, where U ⊆ Rn is open and

f is continuously differentiable. Assume (Df)x0 is invertible for x0 ∈ U and f(x0) = y0.

Then:

1. There exist neighborhoods V ⊆ Rn and W ⊆ Rn, x0 ∈ V , y0 ∈W such that f : V →W

is a bijection.

2. If g : W → V is the inverse of f defined on W , where g(f(x)) = x, x ∈ V , then g is

continuously differentiable and (Dg)y0 = (Df)−1x0

Proof. See Rudin (1976).

Theorem 37 (Implicit Function Theorem). Let f : U → Rm, U ⊆ Rn+m, be a continuously

differentiable mapping such that f(x0, y0) = z0, (x0, y0) ∈ U , x0 ∈ Rn and y0 ∈ Rm. Let:

B :=


∂f1
∂y1

. . . ∂f1
∂ym

...
. . .

...

∂fm
∂y1

. . . ∂fm
∂ym

 A :=


∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...

∂fm
∂x1

. . . ∂fm
∂xn
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If B is invertible, then there exists V ⊆ Rn+m and W ∈ Rn open sets, (x0, y0) ∈ V ,

x0 ∈W , such that for all x ∈W there exists a unique y, (x, y) ∈ V , such that f(x, y) = z0.

If y is defined as an implicit function of x, y = g(x), then g : W → Rm is continuously

differentiable, g(x0) = y0, f(x, g(x)) = z0 for all x ∈W and (Dg)x0 = −B−1A.
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3.3 Exercises

1. Let f : R2 → R be defined by f(x, y) = xy. Let p = (p1, p2) ∈ R2. Show that

(Df)p = (p2, p1) is the derivative of f at p.

2. Prove Theorem 27.

3. Let g : R2 → R, g(x, y) = xy and f : R2 → R2, f(x, y) = (x + y, y). Find the

derivative of g ◦ f .

(Hint: Use the chain rule and the linearity of f).
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