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1 Differentiation in R

Recall the definition of continuity from the first part of the course:

Definition 1. Let f : [a,b] — R, be a real-valued function, p € [a,b]. We write f(z) — g
as x — p or limy_,, f(x) = q if there exists ¢ € R with the following property: Ve > 0 there
exists & > 0 such that:

|f(z)—ql<e, Veep-46p+d)nfad], z#p

The following theorem gives two different characterizations to the definition above:

Theorem 1. Let f : [a,b] — R, be a real-valued function, p € [a,b]. The following are

equivalent:

1. limg—,, f(z) =¢q

2. limy o0 f(xn) = q, for every sequence {x,}5° o, @n # p such that lim, o0 Ty, = p

3. hmfﬂiﬁ f(:L’) - hmpr f(l’) =4q

These equivalences can be proven with the material covered in the first part of the course
and can be found on the reference books. They will be very useful when we want to show

whether a function is differentiable or not. This will become clear soon.

Definition 2. Let f : [a,b] — R, be a real-valued function. We say that f is differentiable

at xo € [a,b] if the limit:
o 1)~ fa)

T—T0 T — X0

exists and is finite. We denote it by:

f(z9) = Tim L8 =1 (@0)

T—TQ Tr — X0

and say that f' is the derivative of f at xg. If f is differentiable at every x € [a,b], we say
that f is differentiable.

Given Theorem 1 we can characterize the derivative of a function as:



Theorem 2. Let f : [a,b] — R, be a real-valued function, xy € [a,b]. The following are

equivalent:

1. f is differentiable at xo, with derivative f'(xq)

2. limp o0 %:ﬂ)xo) = f(x0), for every sequence {x,}5> ), xn # o,

such that lim,_so T, = o

f(@)—f(z0)

T—x0

f@)=fz0) _ pr

3. limg g, = limgpg, =5 )

The following example computes the derivative of some common functions and shows

some functions that are not differentiable.

Example 1. 1. Let c € R and f(z) =c. Then f'(x) =0,Vz € R
2. Letn>1 and f(x) = 2". Then f'(x) = na" !
3. Let f(x) =e®. Then f'(x) =e".
4. f(xz) = |x| is not differentiable at © =0

z-sin(l)  ifz#£0

5. flz) = is not differentiable at x =0
0 ife=0
Proof.
1. f(z)=c
oo = Jim HEZII < i S <0
2. f(x)=2z"

f(z) = f(xo) = 2" —ap

= (x—m) (" T+ a2" 2wg+ 2" i+ .ty P2l



Then,

f'(zo) = lim

T—TQ Tr — X0

zo T — X0

Recall the definition of e,

f(=) = f(@o)

n—1
fl@) = flo) _ . N
T—T0 0
=0
n—1
= 3 byt
k=0
_ n—1
= ’I’ll‘o
e — eto

lim
T—=To T — X

r—xo

. e -1

= 6930 hm —_—
T—=ro T — X0

= €| lim e -1
r—0 x

e := lim (1 + )Y
y—0

Using the continuity of log at 1,

lim log(1+4 y)"/Y = lim
y—0 y—0

Using the continuity of 1/z at 1,

Defining x = log(1 + vy),

Thus,

4. f(x) = |al

1
—log(1+y)=1

)
lim y =
y—0  log(l+y)
l’ —
lim &1 g
x—0 xT

We prove it using the characterizations given by Theorem 2:

lim
zlzo T

M:H,gnmwz—l

zTxo T



Given that the limits from above and from below are not equal to each other, the

function is not differentiable at 0.

z - sin(L)

5. f(x)

ifx#0

0 ifx=0

Consider the sequences x, =

x x
siand y, = 527, neEN
2nm Yn 2nmw+mw/2° :

sin(zy,) =sin(2n7) =0, n €N
sin(yn,) =sin(2nm +7/2) =1, neN

By Theorem 2, f is not differentiable.

The following theorem states the relationship between continuity and differentiation of

a function.

Theorem 3. Let f : [a,b] = R, be a real-valued function, differentiable at xo € [a,b]. Then

f is continuous at xg.

Proof.

/()

Taking limits when x — x,

lim f(z)

T—T0

xr—

f(@) + f(@o) — f(zo)
f(zo) + (f(x)_f(x())> (@ — )

T — X0

f(zo) + lim

T—T0

(ESCNN.

Tr — X

Given that lim,_,, (LW) exists and is finite and lim,_,,, z — x¢ = 0,

=

lim f(z) = f(zo)

Tr—xTQ



Note that the converse of this theorem is not true. That is, if a function f : [a,b] — R
is continuous at some point xo € [a,b], it need not be differentiable at that point. For

example, the function

i) = z-sin(l) ifz#£0
0 ite=0

is continuous at 0, but is not differentiable at that point.

Theorem 4. Suppose f, g : [a,b] = R, be real-valued functions, differentiable at xo € [a, b]
and k € R. Then:

1. (kf) (o) = k[’ (w0)
2. (f +9)(z0) = f'(z0) + ¢'(x0)

8. (f-9)(x0) = f'(z0)g(z0) + f(x0)g'(20)

! ! —g'(z T
4. if g(z0) # 0, then (5) (z0) = f (Jfo)g(w;()xO!;Q( 0)f(zo)
Proof. See Rudin (1976). O
Example 2. Let n > 1 and f(x) = 2. Then f'(z) = nz" '

Proof. By induction. For the base case, n = 1:

fl@) =z, f(x0) = lim

Assume it holds for n = k:

Forn=%k+41:

Using the product rule in Theorem 4,

flwo)=1-af + o kaf ' =2k + kab = (k+ 1)af



Theorem 5 (Chain rule). Let I and J be two intervals in R. Let f : I - R and g:J — R,
f(I) C J. If f is differentiable at xo € I and g is differentiable at f(xo) € J, then:

(g0 f) (o) = g'(f(x0)) [ (w0)

Proof. See Rudin (1976). O

1.1 Mean Value Theorems

Definition 3. Let f : A - R, where A C R.
1. zp € A is a global mazimum of f if f(zg) > f(x), Ve A
2. xg € A is a global minimum of f if f(xg) < f(x), Ve A
3. xo € Ais alocal maximum of f if 30 > 0 such that f(xo) > f(x), Vo e AN (zg—3J,z0+9)

4. xg € A is alocal minimum of f if 30 > 0 such that f(zxo) < f(z), Vze AN (xg— 0,20+ 9)

Theorem 6. Let f : [a,b] = R. If f has a local mazimum (minimum) at zo € (a,b) and f

is differentiable at xq, then f'(x¢) = 0.
Proof. Let f have a local maximum at z¢ € (a,b). Then, there exists a § > 0 such that:
e For all z € (zg, 20+ 0):

fx) = f(xo) _ fx) = flxo) _

<0 = lim <0
T — X0 xlxo T — X0
e For all z € (xg — 0, x0):
f(ﬂf)—f(ﬂfo)zo :>limf(x)_f(x0)20
T — X0 xTxo T — X0

The limits exist, given that f is differentiable at xg. By Theorem 2,

0< f(zg) = lim L) =F@0)

T—x0 T — X0

<0



Theorem 7 (Rolle’s Theorem). f : [a,b] — R continuous on [a,b] and differentiable on

(a,b). If f(a) = f(b), then there exists x € (a,b) such that f'(x) =0

Proof. Define

x1 =argmin f(z), m = min f(x)
z€la,b| z€[a,b]

x9g = argmax f(z), M = max f(x)
z€[a,b] z€|a,b]

e If m =M, fis constant and f'(x) = 0,Vz € [a,b]

e If m < M, at least one of x; or xg is different from both a and b, given that f(z1) <
f(z2) and f(a) = f(b). Without loss of generality, assume z; € (a,b). By Rolle’s
Theorem (Theorem 7), f'(z1) = 0.

O]

Theorem 8 (Cauchy’s Mean Value Theorem). Suppose f, g : [a,b] — R are continuous and

differentiable on (a,b). There exists ¢ € (a,b) such that

f'(@0)(g(b) — g(a)) = ¢'(x0) (£ (b) — £(a))
Proof. Define h(t) := f(t)(g(b) — g(a)) — g(t)(f(b) — f(a)). h is continuous on [a,b], dif-
ferentiable on (a,b) and h(a) = h(b). By Rolle’s Theorem (Theorem 7), there exists an
xo € (a,b) such that h'(xg) = 0. This happens if, and only if,

F'(x0)(g(b) = g(a)) = g'(z0)(f(b) — f(a))

O]

Theorem 9 (Mean Value Theorem). Suppose f : [a,b] — R is continuous and differentiable

on (a,b). There exists xo € (a,b) such that

fb) = fla) = f'(z0)(b — a)
Proof. Set g(x) = x in Cauchy’s Mean Value Theorem (Theorem 8). O
Theorem 10. Let f : [a,b] — R is continuous, differentiable on (a,b) and

sup [f'(z)| <M
x€(a,b)
Then,

[f(x) = f@)] < M]z — 2], z,2" € [a,}]



Proof. Let z,2' € [a,b],z < 2/. By Mean Value Theorem (Theorem 9) there exists { €
(x,2") such that

[f () = f@)] = [f (O |z — 2| < M|z — 2|

Definition 4. Let f : I — R. If for all x1,29 € I:
1. ¢y < xz9 = f(x1) < f(x2), we say that f is monotonically increasing
2. x1 <x9 = f(x1) > f(x2), we say that f is monotonically decreasing
3. x1 < x9 = f(x1) < f(22), we say that f is strictly monotonically increasing

4. 1 <xo= f(x1) > f(x2), we say that f is strictly monotonically decreasing

The next theorem characterizes monotonic functions in terms of their derivatives:
Theorem 11. Let f : [a,b] — R continuous and differentiable on (a,b).

1. f is increasing on (a,b) <= f'(x) > 0,Vx € (a,b)

2. f is decreasing on (a,b) < f'(z) <0,Vz € (a,b)

3. f is strictly increasing on (a,b) if f'(x) > 0,Vz € (a,b)

4. f s strictly decreasing on (a,b) if f'(z) <0,Vx € (a,b)
Proof. 1. =: f is increasing = for all x < 2/, w > 0. Taking limits:

—T

) — b LE) =T

2/ |x r —x -

<: f'(z) > 0 for all € (a,b). Let 1 < x2. By the Mean Value Theorem, there

exists ¢ € (1, x2) such that:
fx2) = f(21) = £ () (w2 —21) > 0

Then, f(x2) > f(z1).

2. Analogous to 1.



3. f'(x) > 0 for all z € (a,b). Let x; < xo. By the Mean Value Theorem, there exists

¢ € (x1,w2) such that:
flx2) = flz1) = f/(Q)(xa —21) >0
Then, f(x2) > f(21).

4. Analogous to 3.
O

Note that 3. and 4. go only in one direction: if the derivative is strictly positive (neg-
ative), the function is strictly increasing (decreasing). However, a function that is strictly
increasing (decreasing) does not necessarily have strictly positive (negative) derivative at
every point in the domain. An example of such a function is f(z) = 3. In this case, f is

strictly increasing, although f/(0) = 0.

Are derivatives continuous? Not necessarily. For example, the function:

i) = z?-sin(1) ifa#0
0 ite=20

is differentiable at every point. However, the derivative is not continuous at 0. Although
we cannot claim that the derivative of a function is continuous, derivatives and continuous

functions have something in common: they take on all the intermediate values.

Theorem 12 (Intermediate Value Theorem for Derivatives). Let f : [a,b] — R continuous

and differentiable on [a,b]. If f'(a) < X < f'(b), there exists x € (a,b) such that f'(x) = .
Proof. Let X such that f'(a) < X\ < f/(b). Define ¢(t) := f(¢t) — At. Then:
gty =1t —A ga)<0, ¢0)>0

This means that g is decreasing on a and increasing on b, so we can find x,z2 € (a,b)
such that g(z1) < g(a) and g(x2) < g(b). Thus, g attains a minimum at some z in the
interior of [a,b]. By Theorem 6, ¢’(x) = f'(x) — A = 0. Then:

flx)=A



O]

Theorem 13 (Inverse Function Theorem). Let f : (a,b) — (¢, d) be surjective, continuous
and differentiable on (a,b), and f'(xz) # 0,Yz € (a,b). Then f is a homeomorphism and its

inverse f~1 is differentiable, with:

Proof. If f'(x) # 0,Vx € (a,b), by the Intermediate Value Theorem for Derivatives, f’(z)
is either positive for all € (a,b), or negative. Assume, without loss of generality, that
f'(x) > 0,Vz € (a,b).

Let a < 1 < 9 < b. By the Mean Value Theorem, there exists ( € (x1,x2) such that:

f(x2) = f(x1) = f(({)(xg —x1) >0

Then, f is strictly monotonically increasing, so it is injective. Since, by assumption, it is
also surjective, its inverse f~! exists and is well defined. Moreover, since f is differentiable,

it is continuous on (a, b).

Now, lets prove that a strictly monotonic and continuous function is a homeomorphism.
Let yo € (c,d) and € > 0. Denote 29 = f~!(yo) and define y~ = f(zo—¢) and y* = f(zg+e).

Let 6 = min{|y* —yol, |y~ — wol}-

Since f is monotonic, f~! is also monotonic, so f ™ (yo+6) < xo+€, fH(yo—6) > 2o —¢
and f~1(yo — J,y0 + ) is an interval. Moreover, f is continuous, so f~!(yo — 6,50 + ) is an
open set, which means that f~!(yo — 4,50 +6) C (wo — €, 20 + €), so f~! is continuous and

f is a homeomorphism.

Now, lets show that:

Let 70 = f1(v0), == f"1(y).

10



(f—l)/(yo) —  lim fﬁl(y> - fﬁl(yO)

Y—Yo Y—%Yo
= lim _rTTo
v=zo f(z) — f(z0)
1
~ f(=o)
1

f'(f=H o))
The second equality is true because f~! is continuous, which implies that y — yo if and
only if z — xg. O

Example 3. Let y = sin(z), z € (—7/2,7/2). Find (f71)(y).

Proof. f~'(y) = arcsin(y). Then, by the Inverse Function Theorem:

1 1 1

() = cos(arcsin(z)) /1 — sin®(arcsin(y)) /11— 32

11



1.2 L’Hospital’s Rule

Theorem 14 (L’Hospital’s Rule). Suppose f and g are differentiable on (a,b), ¢'(x) #
0,Vx € (a,b), where —oo < a < b < co. Suppose:

lim J'(x) = A,

—c0< A< o0
z—a g’(m) - =

If either:
1. limy_, f(x) = limy_yq g(x) =0
2. lim,_,4 g(x) = 00

Then, limg_,q % —A

—

Proof. Without loss of generality, assume —oco < A < co. Let A < r < ¢. Since:

r@_,

i
ma g (x)

There exists ¢ such that:
f'(z)
9'(x)
By Cauchy’s Mean Value Theorem, let a < x < y < ¢. Then:

f@)—fly) _ F'@)

o@ —gw) g " € (z,y) € (a,¢)

<r, Vze/(arc)

If 1. holds, then:
fl@) -1y _ fy)

lim <r<gq
v=a g(x) —g(y) gy
That is, for every g > A there exists ¢ such that ﬁ < q for every y € (a,c).

If 2. holds, there exists ¢; > a such that g(z) > g(y) and g(z) > 0 for all z € (a,c1).

fle) = fy) 9(z) —9ly) _  9(@)—9(y)
T gl 9@ T g
f(z) fly) . 9)
7 9@ " g T gl
Then, there exists co such that % <q, Vz € (a,ca). O

12



1.3 Higher Order Derivatives and Taylor’s Theorem

Definition 5 (Higher Order Derivatives). Let f : [a,b] — R be differentiable.
o If f' is continuous, we say f is continuously differentiable and denote it as f € C*.

o If f' is differentiable, we say that f is twice-differentiable, and denote the second
derivative as f". If, in addition, " is continuous, we say that f is twice-continuously

differentiable and denote it f € C?.

o If f™ is differentiable, we say that f is (n+ 1)th-differentiable, and denote the (n +
1)th derivative as fOD Ifin addition, Y s continuous, we say that f is

(n + 1)th-continuously differentiable and denote it f € C"H1),

Theorem 15 (Taylor’s Theorem). Let f : [a,b] — R be r-th order differentiable. Define:

F0) (2)h"

P(h) = f(x)+ f(x)h+ ...+ -

Then:

fath)=P() _

T

2. P(h) is the only polynomial of degree lower than or equal to r with this approzimation

property

3. If, in addition, f is (r+1)-th order differentiable, there exists ¢ € (x,x+ h) such that:

f(r+1)(<)hr+1

f(x+h)=P(h)+ rt 1)

Proof. 1. Define the residual function R(h) := f(x + h) — P(h). We want to show that:

. R(h)
1
hlg(lJ h"

=0

Note that R(0) = f(z) — P(0) = 0. By the Mean Value Theorem, there exists
01 € (0, h) such that:

R(h) = R(h) — R(0) = R'(61)(h — 0) = R'(61)h
Similarly, R'(0) = f/(x) — P'(0) = 0, so there exists 62 € (0,6;) such that:
R(h) = (R'(61) — R'(0))h = R"(02)(01 — 0)h = R"(62)61h

13



Continuing in the same fashion:
R(h) =...=RU"D(0,_1)0,_20,_3...05010h, 0<0,_1<..<b <h

That is, {6, }"_4 is decreasing, so:

R(h) o R(Tfl)(er_l)er_ger_g ...0201h
h" N h"

R(rfl) (er_l)hrfl
h’l’

IN

R(rfl) (97"—1)
h

R(rfl) (07'—1)
97'71

h—0
0

IN

R(h)

Then, limy_,q ‘T =0.

. Let:
P(h)=ap+arh+...+ah"

Q(h) = by + byh+ ...+ bk

Suppose P # @ are two polynomials such that:

f(z+h)— P(h)

W hr =0
i J@ 0 — QM) _
h—0 h"
Then:
flat+h)—Qh) _ fleth) = P(h)  P(h)—Qh) _
h" B h" h" N

Which means that limy,_,q W =0.

There exists 0 < k < r such that ay # bg. Let kg the highest such k.

o If kg = r, then limhﬁow =a,— b #0

o If kg < r, then limy,_,g W — 400

14



3. R(h) = f(z + h) — P(h). Define g(h) := h™*1.

R(h)  R(h) — R(0)
gh) — g(h)—g(0)
_ R'(h) - R(0)
— g(0)—g(0)

R(r+1)(er+1)
(r+1)!
SO (B )

(r+1)!

15



1.4

10.

11.

12.

Exercises

. Let « € R and

Io) = z®-sin() ifx#0
0 ifx=0

State whether f is differentiable or not. Does it depend on the value of a?

. Let f: R — R be twice differentiable. Suppose there exists ¢ > 0 such that f”(z) > €

for all z € R. Show that f'(x) = 0 for some x € R.

. Let f: R — R be twice continuously differentiable. Assume there is a ¢ € (a,b) such

that f'(¢) =0 and f”(c) < 0. Show that f has a local maximum at c.

. Suppose that f : (a,b) — R is differentiable and f’ is bounded. If {x,} is a sequence

on (a,b) and x,, — a, then f(x,) converges.

. Show that €* > 1+ z for all x > 0.

. Show that if & > 1, then (1 + 2)* > 1+ ax for all x > 0. Similarly, it o < 1,

(1+2)* <1+ ax for all z > 0.

Let f: (a,b) = R be differentiable and f’ increasing. Show that f’ is continuous.

. Give an example of a function f that is differentiable, but whose derivative f’ is not

continuous.

. Let f : [a,b] — R continuous and differentiable. Assume f(a) < 0, f(b) <0, f(c) > 0,

where a < ¢ < b. Prove that there exists ¢ € (a,b) such that f(¢) + f'(¢) = 0.
Show that e® = az? + bz + ¢ has at most 3 real roots.

Let f(a,b) :— R. Assume that f is differentiable at z¢ € (a,b). Show that

lim f(o + h?) — f(xo)
h—0 h

exists.

Let:
2?2 ifzdQ
0 ifreQ
Is f differentiable at x = 0?7

16



13. Let f : R — R be third-order differentiable. Assume that sup,cg |f(z)] < M,

supyer |f”(x)| < My. Then, f" and f” are bounded.

14. Let f,g9: R — R be two functions.

(a) Assume f is differentiable at z¢ but g is not differentiable at x¢. Prove f(z)+g(x)

is not differentiable at xg.

(b) Assume both f and g are not differentiable at z. Can f(z)+g(x) be differentiable

at xqg?

15. Let f,g : R — R be two functions. Let yg = g(z¢) for some zy € R. Consider the

following cases:

(a) g is differentiable at xg and f is not differentiable at yp;
(b) g is not differentiable at xy and f is differentiable at yo;

(c) g is not differentiable at xp and f is not differentiable at yp.
For each case, find examples of f and g such that f o g is differentiable at z.

16. Assume f is differentiable at some xg. Calculate the following two limits.
(a) limp_o f(ﬂﬁo—h})l—f(ﬂ?o);
(b) limp_so f(l‘o-i-h);f(xo—h) )

17. (Exercise 1 on page 186, Pugh)

18. (Exercise 5 on page 186, Pugh)

19. (Exercise 11 on page 186, Pugh) Assume that f : (—1,1) — R and f/(0) exists.

Qp, Bn, — 0 as n — oo, define the different quotient

f(Bn) — f(an)

D. —
" Bn_an

(a) Prove that lim,_,o D, = f/(0) under each of the following conditions
iLoa, <0< f,.
ii. 0 < ay < B, and Bnﬁjdn <M.

iii. f/(x) exists and is continuous for all x € (—1,1).

17
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20.

21.

22.

23.

24.

25.

(b) Set f(z) = 2%sin(1/z) for x # 0 and f(0) = 0. Observe that f is differentiable
everywhere in (—1,1) and f/(0) = 0. Find «, and $, that tend to 0 in such a

way that D,, converges to a limit unequal to f/(0).
(Exercise 13 on page 187, Pugh) Assume that f: R — R is differentiable.

(a) If there is an L < 1 such that for each z € R, f’(x) < L, prove that there exists

a unique point z such that f(z) = x.

(b) Show by example that (a) fails if L = 1.

Suppose f : R — R is twice differentiable. Assume f(0) > 0, f/(0) < 0 and f”(z) <0
for all z € R. Prove there exists £ € (0, ) ) such that f(§) = 0.

—f(0)
Assume f : [a,b] — R is twice differentiable and f’(a) = f/(b) = 0. Prove there exists

€ € (a,b) such that

701 = Gl - r@).

(Hint: expand f (“T“’) at a and b respectively)
(Exercise 10 on page 187, Pugh) Let f : (a,b) — R be given.

(a) If f”(x) exists, prove that

L f@—h) = 2f(@) + flz+h)
h—0 h?

= f"(x).
(b) Find an example that this limit can exist even when f”(z) fails to exist.

Let f : [a,b] — R be twice differentiable. Assume sup,¢(,y |f”(2)] < M for some
constant M. Assume also f achieves its global maximum at some point z* in (a,b).

Prove

|f(@)] + |f'(b)] < M(b~ a).
Assume f function is continuous on [0,00) and differentiable on (0,00). Suppose
f(0) =0 and f’ is increasing on (0, 00). Prove

o) = 1)

X

is increasing on (0, c0).

18



2 Differentiation in R"

2.1 Preamble

The following section assumes knowledge of linear algebra. Particularly, the following the-

orems will be used henceforth.

Definition 6. Let V and W be vector spaces. The mapping T : V. — W 1is linear if
Yo, o' € V,a, 8 € R:
T(av + pv') = T (v) + BT (V')

Definition 7. Let V' and W be vector spaces. We say that V. and W are isomorphic if

there exists a linear mapping T : V. — W that is bijective. T is called an isomorphism.

Theorem 16. Let V and W be vector spaces and dim(V) < oo, dim(W) < co. Then, V
and W are isomorphic if, and only if, dim(V') = dim(W).

The importance of this theorem relies on the fact that if we want to study any finite
dimensional vector space of dimension n, it suffices to study R".
2.2 L(V,W) as a normed space

Recall that a norm on a vector space V is a function [|-]] : V' — R such that, for every

v,w €V and X € R:
1. ||v|]| > 0 and ||v|| = 0 if and only if v =0
2. ([l = ALl
3. [Jo 4wl < loff + flwl|

We are now going to endow the vector space L(V, W) of all linear maps from V to W

with a norm.

Definition 8. Let V' and W be two normed vector spaces with |-\, and ||-||;, the respective
norms. Consider the map T : V. — W. That is, T € L(V,W). Define the operator norm

I-]| on L(V,W) as:

T

7)) = sup 1w
vt |[vlly
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Note that for v € V, the term Hﬁ"'f is the “stretch” of the vector v after T is applied

to it. Therefore, the operator norm is the supremum of the “stretches” of the the vectors

in V' under the operator T

Example 4. 1. T:R— R, T(z)=az,a €R.

[Tl _ low] _od-lzl _ ) vy e R
]l 2| ||
= ||| = ||
2. T:R—R" T(z) =vz,veR"
IZall _ ozl _ Mol -lal _ - gy e w
Izl ~ ]
=T = vl

The following theorem endows the vector space L£(V, W) with the operator norm |-||

defined above.
Theorem 17. ||| is a norm on L(V,W).
Proof. Left as an exercise. O

The next theorem gives another characterizations of the operator norm. In particular, it
states that to compute the norm of an operator T': V' — W, it suffices to find the maximum
stretch of the operator over the elements on the unit sphere, instead of the stretch of every
single vector in V. The intuition behind the proof is simple: any linear operator has exactly
the same “stretch” over all the multiples of a vector v. That is:

[Tvll _ [IT(w0)]
o] [[Avll

, VAeR

This means that computing the supremum over all the elements of V' is equivalent to finding

the supremum over all the elements in the unit sphere in V.

Theorem 18.

[Tl [ T]]
IT|| = sup =7 = %= sup [Tl

w20 vl B w0 vy lv)|=1
llvl<1
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Proof. Define:

T T
a :=sup | UHW, b:= su | UHW, c:= sup [Ty
vzo vl w0 vy o]|=1
lv]|<1

We are going to show that a > b > ¢ > a.

e a>b {v:|v]| <1l,0+# 0} C{v:v#0}. Therefore, the supremum taken over a

bigger set must be greater than or equal.

e b>c {v:|v]| =1v#0} C{v:|v| <1,v# 0}. Therefore, the supremum taken

over a bigger set must be greater than or equal.

o U >a:

Assume ¢ < a. This means:

T
sup || Tvl|y, < sup ITvlly
Jell=1 vz [vlly
= Jdug € V such that:
[Tl

sup HTUHW< H H
[lv][=1 bolly

| Tvol|yyr _ < 1 ) A Twolly = H( 1 ) Tu
[[volly, l[volly W llvolly/

ddtmml
w HUOHV w

Denote z := ”UZT‘V. Clearly, ||z|| = 1, which means that:
T’UQ
B sy, > sup 7oy, =€ Vil =1
lvolly, lvll=1

which is a contradiction. Thus, a = b = c.
O

The following theorems are properties of the operator norm ||-|| that will be used later

when studying derivatives in R".
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Theorem 19 (Cauchy-Schwartz Inequality). [|[Tv|y, < || T - ||vlly,, Vv eV

Proof. If v =0, then ||v|| =0 and ||Tv| = 0.
If v # 0:

[Tv] [Tl
o<sup — =T = ([ Tolly < T flolly,, YoeV

lolly -~ w0 llvlly
O
Theorem 20. If |[Tv||, < Alvlly,, Yo eV and X > 0, then:
1T < A

Proof.

T

H UHW < )\, YoeV

[olly
Taking the supremum over all v € V', the inequality remains. O

Theorem 21. IfT :V — W and S : W — U are linear maps between normed spaces,
then:
1S o Tl < [IS[HT

Proof. Using Theorem 19:

SoT)v S(T (v S| - ||[Tv S| T ||v
l[vlly [vlly [olly, [vlly

Now that we have endowed L£(V, W) with a norm, we can define a metric in the natural
way:

d(T7 S) = ”T_ SH7 VTaS € ‘C(V7 W)

With a metric, we can talk about open and closed sets in £(V, W) and apply all the

topological properties of metric spaces derived in the first part of the math camp.

The following theorem will prove to be very useful later on. It gives another character-

ization for continuous operators 7T.
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Theorem 22. Let T € L(V,W) be a linear mapping. The following are equivalent:
1. |7 < o0
2. T is uniformly continuous
3. T s continuous
4. T is continuous at the origin
Proof. 1. = 2.: Assume ||T|| < oc.
70—y = 760 =)y < 1T o=,
Let € >0 and 6 = ¢/ ||T||. For all v,v" € V such that v — |\, < =¢/||T|:
.

[0 =Ty < ITI o = o'lly < I 7 =€

Thus, T is uniformly continuous.

2. = 3.: Immediate.

3. = 4.: Immediate.
4. = 1.: Assume T is continuous at the origin and take e = 1. 4§ > 0 such that Vv € V:

lolly <6 = T =TO)llw = Tvly <e=1

Let v € V and set u := Av, where A\ = QHgH .
\%4

0
[ully = [[Avlly = 5 <d = |Tully <e=1

T T 1 2
I ’UHW N | U”W < _

ol Tl llully, 0

Taking supremum over all v € V:

1T < < <00

23



The idea behind the proof of the last implication is the following. The stretch of any
vector v under 7T is the same that the stretch of a multiple of that vector under 7T'. Thus,
for any v, we take a vector u, which is a multiple of v that has a sufficiently small norm.
We know that T' is continuous at the origin, so the image of v under T will be bounded,

proving that its stretch is finite.

Theorem 23. Let T : R® — W be a linear mapping to W, a normed vector space. Then

T is continuous. If, in addition, T is an isomorphism, the T is a homeomorphism.

Proof. First, we will show that any linear mapping from R" to any normed vector space W

is continuous. By Theorem 22, It suffices to show that || 7| < oc.

Il = /o2 4422 > fuil, i€ {L,....n)

Let M = max{|Tei|,...,|Te,|} where e; are the unit vectors in R".
[Tollyy = [T(v1er+ ...+ vnen) |y
< foil[[Terl[ + .. + [val [ Ten||
< (il + oot o) - M
< M|
T T
[v]] w20 [vlly

This proves that T is continuous. Now, assume 7 is an isomorphism. We want to show

that 7! is continuous. That is,

T‘1H < 0. Define the unit sphere in R™:

Sl={weR": |u]| = 1}

S"~1is compact in R”. Since T is continuous, 7'(S™~!) is compact in W. Given that T

is an isomorphism:

Tw)=0 <= v=0

So, since 0 ¢ S 1 = 0 ¢ T(S" ') and 3¢ > 0 such that ||w| > ¢, Vw € T(S™1).
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It can be easily shown that the preimage of elements w inside the c—sphere in W lie strictly

inside S™~1. That is:

Vw e Wyw ¢ T(S™ ), [wlly <c = |77 | <1

Now, lets to the same as in the proof of Theorem 22. Take any w € W and define
u = \w, where A = 5—5—.
2wy

lully <c = HT

|7~ wl] _ 2

= <Z<oo = [T <o
l|wl|y c

O]

Theorem 24. Let T : V. — W be a linear mapping. If dim(V) = n < oo then T is

continuous and if T is an isomorphism, T is an homeomorphism.

Proof. dim(V') =n so V and R™ are isomorphic. Let H : R” — V be an isomorphism. By
Theorem 23, H is a homeomorphism, so H~! is continuous. Moreover, T'o H : R® — W is

also continuous. Therefore, T = (T o H) o H~! is continuous.
If T is an isomorphism, since H is isomorphism, 7" o H is an isomorphism and, by

Theorem 23, a homeoporphism. That is, (T o H)™' = (H~! o T7!) is continuous. Then,

T-!'=Ho(H 'oT™1) is continuous.
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3 Derivatives in R"

Recall that f : R — R is differentiable at € R if the following limit exists and is finite:

o ) - f(@)
h—0 h

We say that the derivative of f at x is:

Fe) — fim T =)

h—0 h
This is equivalent to saying that f is differentiable at x, with derivative f’(x), if there

exists a function r : R — R such that:

flx+h) = f(x) = f'(x) h+r(h)

And the remainder r is “sublinear”:

lim r()

h—0 h =0

Note that, for a given x, the term f’(x)h is linear in h, so we can interpret the derivative
f'(x) not as a number, but as a linear operator in R, that maps h to f/'(z)h. This is a

natural way to extend the concept of derivative to R™:

Definition 9. Let f : U — R™, U C R". The function f is differentiable at p € U, if there

exists a linear transformation T : R™ — R™ such that:

flp+v) = f(p) =T(v) + R(v)

and the remainder function R is sublinear:

1o IR@)]

v=0 ]

=0

We say that the derivative (also called total derivative of Frechet derivative) is (Df), =T.

This is equivalent to saying that f : U — R™ is differentiable at p € U if there exists a

linear transformation 7' : R®™ — R™ such that

S+ e) = @) = TE)

v—0 ||1)H

=0
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Theorem 25. If f is differentiable at p € U, then the derivative is uniquely determined by:

(Df), () = lim P10 = T ()

t—0 t

Proof. Let T be a linear map satisfying f(p+v)— f(p) = T'(v)+ R(v) and lim,_q LGN

[[]

i @) = fp) e T(tw) | Rt
t—0 t t—0 t
— lim tT(u)  R(tu)
t—0 t
R(tu)

= () +lim )

aid

Given that ||u|| is finite and R is sublinear, the second term vanishes, so:

lim f(p + tU) — f(p) _ T(u)
t—0 t

Since limits are unique, if there are two such transformations 7" and T, they must be equal

to each other: T = T". O

Now, we state some of the theorems we saw in the univariate case, extended for the

multivariate case.

Theorem 26. Let f : U — R™, U C R". Suppose f is differentiable at p. Then f is

continuous at p.

Proof. (Df), : R* — R™ is a linear map, from R" to a normed vector space R™. By

Theorem 23, (Df), is continuous. This is equivalent to ||(Df),]|| < oc.

i [|f(p+o) = f(P)| = lim [(Df)p(v) + R(v)]|
< m [(DF)pll - ol + [ B(v)]]

=0
given that [[(Df),]] < oo, lim,—0 ||v]| = 0 and lim,_q [|R(v)|| = 0. O
Theorem 27. Let f,g: U — R™, U C R" be differentiable at p € U, a € R. Then:

1. (D(f +ag))p = (Df)p + a(Dg)p

2. If f(p) =c, for allp € U, then (Df), =0
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3. If f: R — R™ is a linear mapping, f(v) = Av,A € R™ x R", then (Df), = A for

Proof.

Theo

allpe U
Left as an exercise. O
rem 28 (Chain Rule). Let U C R™ and W C R™ be open sets. Let f : U — R™

be differentiable at p € U and f(U) C W. Let g : W — R! be differentiable at f(p) € W.
Define h = go f. Then h is differentiable at p € U and (Dh), = (Dg)sp) - (D f)p

Proof.

g(f(p) +u) —g(f(p

There

g(

flp+v)=flp) = (Df)p(v) + R(v)
) = (Dg)yp)(u) +5(u)
) = 9(f(p) + (Df)p(v) + R(v))
= 9(f () + (D9) ) (Df)p(v) + R(v)) + S(Df)p(v) + R(v))

)
g(f(p+w)

fore,

fo+0) =g(f(p) = (Dg)sp)((Df)p(v) + R(v)) + S(Df)p(v) + R(v))
= (D9)s)(Df)p(v) + (Dg) i) R(v) + S(Df)p(v) + R(v))

It now suffices to show that the last two terms are sublinear:

1.

2.

(Dg) ) R(v):
@R RO
as the first term is finite anr R is sublinear.
S((Df)p(v) + R(v)):
L ISUDA @) + RO ISUDA(0) + RO WD) + RE)I
v=0 [v]] v=0 [[(Df)p(v) + R(v)]] [v]]

The limit when v — 0 of the last term is finite:

R(v)

o]

I(D0)p(0) + RE)| D@ B WOl | B@) o
R A ]
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O]

Theorem 29. Let f: U — R™ U C R". Then, f is differentiable at p € U if and only
if each of its components f; is differentiable at p. Furthermore, the derivative of the i-th

component is the i-th component of the derivative.

Proof. =: Let f be differentiable and define the projection on the i-th dimension as:
mi R =R, mi(w,...,wi,...,wy) =w;

Clearly, m; is linear, so it is differentiable. Then, f; = m o f is differentiable and:

(Dfi)p = (Dﬂi)f(l?) (Df)p

Moreover, since the projection can be represented by the 1 x n vector that has 1 in the i-th

component and 0 elsewhere:

We know that (D;)y(,) is represented by the matrix A. So:

(Dfi)p=mio(Df)p

<: Suppose each f; is differentiable, with derivative (D f;),. Construct:
(D f1)p

A= :
(D fm)p

filp+h) = filp) = (Df1)p - h
= fp+h)—fp)—(Df)p-h= :
fm(p+ h) - fm(p) - (Dfm)p “h

Taking limits, this converges if and only if each each component converges. Therefore,

(Df)p is the derivative of f. O

This theorem is important, because it shows that what makes calculus in R" different

from calculus in R is the multidimensionality of the domain, and not of the range.
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Theorem 30 (Mean Value Theorem). Let f : U — R™ U C R™. Assume f is differentiable

on U and the segment [p,q| is contained in U. Then:

[fla) = fp) <Mlg—pl, M= 21618{!\(Df)x!\}

Proof. Assume the segment [p.q| is contained in U. The segment can be parameterized as:

p+tlg—p), tel0.1]
Define:
g:[0,1] =R, g(t):=(f(p) — f(@)" - flp+tla—0p))
= 4 = ®) — f)(Df)pttg—p) (@ —D)

By the Mean Value Theorem in R, there exists ¢ € (0, 1) such that:
9(1) = 9(0) = ¢'(¢) = (f(») = F(@)" (D) pic(a—n (@ —p)

9(1) — g(0) = (f(») — f(@)' - (f() — F(@)) = = lf(p) — F(@)|?
= f®) = F@I* = (f®) — F( @) (Df)picqp) (P — )

By the Cauchy-Schwartz Inequality:

1£(p) = F(@] < [[(DH)prcanll - lp —all < Mllp -4l
0

Corollary 1. Assume U is connected. Let f : U — R™ U C R" be differentiable and
(Df)z =0. Then f is constant.

Proof. Let x € U. Define P(z) :={y € U|f(z) = f(y)}. Lets show that P(z) is open:
Let y € P(x). Since U is open, there exists an e-neighborhood of y, O, C U, which is open.
Let z € O,. The segment [y,z] C O,. Then, |f(y) — f(2)| < M |y — z| = 0. This implies
that f(z) = f(y) = f(z) for every z € O,. Then z € P(z), which implies O, C P(x), so
P(x) is open.

Now we show P(z) = U,Vax € U. Assume P(z) # U. That is, assume there exists z €
U, P(x) # U. P(x) and Uyg p(,)P(y) are both open, disjoint and U = P(2)U (Uygp) P(y)).
This implies that U is disconnected, which is a contradiction. Therefore, P(z) = U. O
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3.1 Partial Derivatives

Definition 10. Let f: U — R™, U C R". Define the ij-th partial derivative of f at p as:

ofi(p) lim filp+tej) — fi(p)
8x]’ 450 t

Theorem 31. Let f : U — R™ U C R” be differentiable. Then, the partial derivatives

exist and are the entries of the matrixz that represents the total derivative.

Proof. Recall that the total derivative (Df), is a linear map. This means that there exists
a matrix of size m x n that represents (Df),. Let A be the matrix that represents the

derivative (D f),. Then:

OQ (»
. flp+te) — f(p) v
(DP)yles) = Acs = lim T 21 -
Afm(p)
Ox;
Then:
df1(p) df1(p)
0x1 T 0Tn
A= : :
Ofm (p) Ofm (p)
0x1 T OTn

O]

Note that Theorem 31 states that if the derivative exists, then the partials also exist.
A natural question is whether the converse is true. If the partial derivatives exist, is the

function f differentiable? The following example shows that this is not the case.

Example 5. Let:

0 fa,y=0
flz) = Jo

Ryl otherwise

f is not continuous at (x,y) = (0,0). To see this, take:
1 1
(T, Yn) = <n’ \/ﬁ) =225 (0,0)
1

Sovn>1
g0 =

f(mn, yn) =

But f(0,0) =0, so f is not continuous. However, the partials exists. Note, however, that

the partials are not continuous.
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In the above example, we saw that the existence of the partials is not sufficient for
the function to be differentiable. In particular, the partial derivatives of the function in
the example existed, but were not continuous. The following theorem states a sufficient

condition for f to be differentiable.

Theorem 32. Let f : U — R™ U C R™. If the partial derivatives of f exist and are

continuous then f is differentiable.

Proof. Assume the partials exist and are continuous. Without loss of generality, assume

that m = 1 (Theorem 29). Let h € R™.

flx+h)—f(z) = f(x14+hy,...;xn+hp) — f(x1,...,20)

= f(z1+hi,...,zn+ hy) — f(x1,22 + hoy oo 20 + hy)

+ flxy, 29+ hoy..oyxn + hy) — f(z1, 22,23 + hg ..., 20 + hy)
(

+ flxi,z0,23+ hs, ...,z + hy) — f(21, 22,23, 24 + ha, ..., 2p + hyp)
+ f(l’l,l’g,...,l‘nfl,l‘n—i—hh)—f(l’l,l'g,...,l‘n)

We are “moving” component by component on each line. Using the Mean Value Theorem:

0
= f(91,372+h27.-.,$n+hn)h1

day
0
+ i($1,92,$3 +h3, ..., 2y + hy)ho
Oxo
+ ...
0
+ a:il(xla B 7$n71y9n)hn

where 01 € (21,71 + h1),...,0n € (xp, s + hy). Then:

flx+h) — f(x)—A-h

of
= <axl(91,l‘2 —|—h2,...,:1cn—|—hn) —

= z(h)-h

G, 0 g

By Cauchy-Schwartz Inequality:

|f(x+h)—f(x)—A-h| _ |z(h)| L -
1] < Ty M= D=l == 0
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where the last inequality follows because the partials are continuous. Therefore, f is differ-

entiable. n

3.2 Higher Order Derivatives
Recall that for f: U — R™ differentiable:
(Df):U — L(R",R™)
x> (Df)x
where, for all z € U, (Df), : U — R™. We define the second derivative analogously.
Definition 11. (Df) is differentiable at x € R™ if there exists a linear mapping
T:R" — L(R", L(R™,R™))
such that:

[R)]]

—0
Jol=0 v

(Df)ztv — (Df)z =T (v) + R(v),

We denote the derivative as (D*f) := T and call it the second derivative of f.

Note that (D?f) : R® — L(R", L(R",R™)), so when we evaluate the derivative at a
point p € R", (D?f), is a linear transformation from R" to £(R",R™). This means that

for v € R, (D?f),(v) is a linear transformation from R" to R™:
(D2)yv) - R" 5 B
This finally means that:
(D%f)p(v)(w) €ER™, v eR" weR"
We can also interpret (D?f), as a function:
(D*f)p : R* x R™ — R™
(v,w) = (D*f)p(v)(w) € R™

Definition 12. Let V, W, Z be vector spaces. A map T : V x W — Z is bilinear if for every
v eV and every w € W, the maps T'(v,.) : W — Z and T(.,w) : V — Z are linear.
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Note that the second derivative (D?f), is a bilinear map.

Equivalently, (Df) is differentiable at p € R™ if there exists a linear map 7' : R" —
L(R"™, L(R™,R™)) such that:

[(Df)p+o = (Df)p =Tl _
[v]|—0 [[v]]

Theorem 33. Let T : R™ x R®™ — R be a bilinear map. There exists a unique matriz

representation Amxn of T, such that:
g(u,v) =u'Av, u€R™ veR"

Proof. See Lang (2010). O

That is, if the function f : R™ — R is twice differentiable, there exists a matrix repre-

sentation for the second derivative.

Theorem 34. Let f : R — R™. If (D*f), exists, then (D*fy), exists, the second partial

derivatives at p exist and

9% fr(p)

(D? fi)p(ei)(ej) = Pidr,;

Proof. Let f : R® — R™ be twice differentiable, so (D?f), exists. Let the mapping
S LR",R™) — pmxn be the isomorphism that assigns to a linear transformation its

matrix representation:

S(T)=A4, T(w)=Av, veR"

(Df); is a linear transformation and is differentiable, so S o (Df), is differentiable. Note

that:
of1 of1
ox1 e Oy
My :=So(Df)y=| :
Ofn Ofn
ox1 e Oy

Note that the map S o (Df) : R™ — fmxn, and fmxy is isomorphic to R™*™. By

Theorem 29, the map S o (Df), is differentiable at x = p if and only if all of the entries
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of M, are differentiable. Then, its partial derivatives exist and are the derivatives of the

entries of M,:

6(3;”;) 2
oxy, _8xj0:17k

. s 9% f;
The second partial derivatives are D, dor ]

Now, we can define the hessian. Consider f : R® — R. Suppose that (D?f), exists.

Then its representation matrix exists, we denote it the hessian matrix, and is given by:

_0°f o2 f
0x1011 te 0x10xn
92 f 02 f
Oxndx1 " Oxpdrn

Theorem 35. If (D?f), exists, it is symmetric:

(D?f)p(v)(w) = (D f)p(w)(v)

Proof. Without loss of generality, assume m = 1 (as symmetry concerns only the arguments
of f, not its values). Let f: R™ — R. Fix v,w € R™. Let ¢t € [0,1] and define g : [0,1] — R,

where:

9(s) = f(p+tv+ stw) — f(p+ stw)

= g(0)= flp+tv) = f(p), g(1)=flp+tv+tw)— f(p+tw)

Note that ¢g(1) — ¢g(0) is a symmetric function of v and w, so we can interchange them and

get exactly the same result:

9(1) —g(0) = f(p+tv+tw) — f(p+tv) — f(p+tw) + f(p)

By the Mean Value Theorem, g(1) — ¢g(0) = ¢'(0),0 € (0,1). By definition of the
derivative:

(Df)prtvsorw — (Df)p = (D p(tv + Otw) + R(tv + Otw)

(Df)psotw — (Df)p = (D*f)p(0tw) + S(0tw)

35



= (Df)prtvrotw — (D)proww = (D*fp(tv) + R(tv + 0tw) — S(0tw)

g (0) = (D*f),(tv) (tw) + R(tv + tw)(tw) — S(Otw)(tw)

t—0
e

q'(9)

t2
(sz)pt(Qtv)(tw) N R(tv + titw)(tw) N S(Qm;;)(tw)
(D2f), (v)(w) + R(tv + Otw)(w) ~ S(ftw)(w)

+
t t
(D?f)p(v)(w)

The result is exactly the same if we interchange v and w:

=

(D?f)p(v)(w) = (D*f)p(w)(v)

O

Corollary 2. Let f: R™ — R. Suppose that f is twice differentiable. Then, there exists a

symmetric matriz representation (hessian) for (D?f),.

Theorem 36 (Inverse Function Theorem). Let f : U — R"™, where U C R" is open and

f is continuously differentiable. Assume (Df)y, is invertible for xo € U and f(xo) = yo.

Then:

1. There exist neighborhoods V C R"™ and W CR", zg € V, yo € W such that f : V — W

is a bijection.

2. If g: W — V is the inverse of f defined on W, where g(f(x)) =z, x € V, then g is

continuously differentiable and (Dg)y, = (D f)5}

Proof. See Rudin (1976).

O]

Theorem 37 (Implicit Function Theorem). Let f : U — R™, U C R"*™  be a continuously

differentiable mapping such that f(zo,y0) = 20, (x0,y0) € U, xg € R™ and yo € R™. Let:

af1 of1 of1 N
oy1 U Oym ox1 O
B := : : A= : :
Ofm Ofm O fm Ofm
oy1 U Oym o0x1 O
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If B is invertible, then there exists V. C R"™™ and W € R"™ open sets, (zo,y0) € V,
xo € W, such that for all x € W there exists a unique y, (x,y) € V, such that f(x,y) = 2.
If y is defined as an implicit function of x, y = g(x), then g : W — R™ is continuously
differentiable, g(zo) = yo, f(z,9(x)) = 20 for allz € W and (Dg),, = —B~'A.
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3.3 Exercises

1. Let f : R?> — R be defined by f(z,y) = xy. Let p = (p1,p2) € R%2 Show that
(Df)p = (p2,p1) is the derivative of f at p.

2. Prove Theorem 27.

3. Let g : R2 - R, g(v,y) = 2y and f : R? — R2, f(z,y) = (v + y,y). Find the
derivative of g o f.

(Hint: Use the chain rule and the linearity of f).

38



References

Lang, S. (2010). Linear algebra. Springer.

Rudin, W. (1976). Principles of mathematical analysis. McGraw-Hill International Editions.

39



	Differentiation in R
	Mean Value Theorems
	L'Hospital's Rule
	Higher Order Derivatives and Taylor's Theorem
	Exercises

	Differentiation in Rn
	Preamble
	L(V,W) as a normed space

	Derivatives in Rn
	Partial Derivatives
	Higher Order Derivatives
	Exercises


